

14th U.S. National Congress on Computational Mechanics

Montréal • July 17-20, 2017

Congress Program at a Glance

Sunday, July 16		Monday, July 17	Tuesday, July 18	Wednesday, July 19	Thursday, July 20
Short Course Registration		Registration 7:30 am - 5:30 pm	Registration 7:30 am - 5:30 pm	Registration 7:30 am - 5:30 pm	Registration 7:30 am - 11:30 am
8:00 am - 9:30 am	8:30 am - 9:00 am	OPENING			
	9:00 am - 9.45 am	PL: Tarek Zohdi Chair: J.T. Oden	PL: Andrew Stuart Chair: T. Hughes	PL: Mark Ainsworth Chair: L. Demkowicz	PL: Anthony Patera Chair: M. Paraschivoiu
Short Courses 9:00 am - 12:00 pm	9:45 am - 10:15 am	Coffee Break	Coffee Break	Coffee Break	Coffee Break
	10:15 am - 11:55 am	Technical Session TS1	Technical Session TS4	Technical Session TS7	Technical Session TS10
Lunch Break	11:55 am - 1:30 pm	Lunch Break	Lunch Break	Lunch Break	CLOSING
	1:30 pm - 2:15 pm	^a SPL: Raúl Tempone	^a SPL: Ron Miller	^a SPL: Eldad Haber	
		^b SPL: Marino Arroyo	^b SPL: Beth Wingate	^b SPL: Margot Gerritsen	
Short Courses 1:00 pm - 4:00 pm	2:15 pm - 2:30 pm	Break-out	Break-out	Break-out	
	2:30 pm - 4:10 pm	Technical Session TS2	Technical Session TS5	Technical Session TS8	
Congress	4:10 pm - 4:40 pm	Coffee Break	Coffee Break	Coffee Break	
Registration 2:00 pm - 8:00 pm	4:40 pm - 6:20 pm	om - 6:20 pm Technical Session TS3 Poster Session TS		Technical Session TS9	
Reception Opening in 517BC 7 th floor Terrace Plenary Lectures (PL) in 517BC 6:00 pm - 8:00 pm Semi-Plenary Lectures (SPL): ^a SPL in 517D ^b SPL in 516BC				Cocktail 7:00 pm - 7:30 pm Banquet 7:30 pm - 9:30 pm Fireworks	Coffee Breaks in 517A Cocktail and Banquet in 517BC Viewing of Fireworks and Closing Reception
		Poster Session in 517A		10:00 pm - 10:30 pm	on 7th floor Terrace

On behalf of Polytechnique Montréal, it is my pleasure to welcome, to Montreal, the 14th U.S. National Congress on Computational Mechanics (USNCCM14). Over the years, USNCCM has undeniably become an event of reference in the field of Computational Science and Engineering (CS&E), with participants from academia, government and industry. The congress, which will be held for the first time outside of the US, has selected for its venue the City of Montreal. Excellent choice indeed, as Montreal is a bustling city with many cultural events and summer festivals. In addition to the quality of its universities, Montreal is such an attractive city that it has been recognized in 2017 as the World's best destination for students.

As innovation is increasingly synonymous with competitiveness, growth, and prosperity, it is not surprising that government and industry stakeholders in Canada rely more and more on its research institutions, such as Polytechnique Montréal, to ensure the continuing growth of its knowledge-based economy. Since the digital revolution of the 70s, innovation has greatly benefited from simulation-based engineering and sciences to the point that this field has now permeated every possible industrial sector. Whether it be the development and optimization of chemical processes for the biorefining industry, the large-scale production of nanomedicines for the pharmaceutical industry, the optimization of aircraft designs for the aerospace sector, or the design of effective and minimally-invasive surgeries, CS&E has become an indispensable component of R&D activities in such key sectors of our modern economies. It is also an asset for the development of technologies based on clean and sustainable sources of energy.

CS&E may help provide a clear and decisive edge to all industries. For instance, those that increasingly rely on virtual prototyping and process simulation to improve the quality of their processes and products, and simultaneously reduce their costs, will increase their chances of maintaining or boosting their competitiveness in the global market.

As a leading school of engineering in Canada, Polytechnique Montréal, with the collaboration of other universities from Quebec, Ontario and Northeast US, is extremely proud to host the 14th edition of the USNCCM.

I wish you a great congress and a wonderful experience in Montreal.

Kind regards,

François Bertrand Eng., Ph.D. Chief Research, Innovation & International Officer

We are pleased to welcome you to USNCCM14, the 14th U.S. National Congress on Computational Mechanics, the biennial congress of the U.S. Association for Computational Mechanics (USACM), which is held this year at the Palais des Congrès de Montréal, July 17-20, 2017.

From their inception in 1991, the biennial congresses of USACM have become major scientific events, drawing computational engineers and scientists from government, academia, and industry. The congress provides an excellent forum for researchers and practitioners from all over the world to discuss the latest advancements and future directions in fields pertaining to Computational Engineering and Sciences. The 14th edition will indeed continue the tradition, as the technical program of USNCCM14 features four plenary and six semi-plenary lectures by renown scholars, over eighty mini-symposia, two student poster competitions sponsored by AHPCRC and the Journal of Computational Engineering and Sciences.

Social activities include a welcome and a closing reception on the terrace of the Palais des Congrès, a congress banquet, during which the winners of the student poster competitions will be awarded the prizes and that will be followed by the viewing of the Pyro Rhapsody fireworks of the Festival de l'International des Feux. We also hope you will find time to enjoy the cultural diversity and discover the joie de vivre of Montreal and its surroundings. 2017 is also a special year in Montréal, as the city celebrates its 375th anniversary with activities and events commemorating its history. Moreover, it is internationally recognized for its many summer festivals, fine dining, unique architecture, and hospitality.

We are grateful to the USNCCM14 scientific and local organizing committees, as well as the USACM Council and Steering Committee, for sharing valuable advice on the organization of the congress. We would like to thank of course the USACM staff, in particular Mrs. Ruth Hengst, for their patience and diligence in dealing with our many requests. We thank the mini-symposia organizers for attracting high-quality speakers and scheduling the technical sessions, the student volunteers for their invaluable help, and the sponsors of USNCCM14 for their generous support. At last but not least, we would like to thank all speakers and poster presenters, whose technical contributions will make USNCCM14 a successful congress.

Steven Dufour, Marc Laforest, and Serge Prudhomme USNCCM14 Co-Chairs Departement of Mathematics and Industrial Engineering École Polytechnique de Montréal

Palais des Congrès de Montréal

Congress Information

Registration Location/Hours

The registration desk is located on the 5th floor of the Palais des Congrès de Montreal. Registration hours are as follows:

 Sunday:
 2:00 pm - 8:00 pm

 Monday - Wednesday:
 7:30 am - 5:30 pm

 Thursday:
 7:30 am - 11:30 am

Registration Fees

Your registration fee includes access to all technical sessions, receptions, breaks, poster session, and banquet. Those who are registered as accompanying persons may attend the opening reception and banquet.

Congress App

The congress app may be located by searching for USNCCM14 in your app store. The app is available for all registered participants. To logon to the app use your email used when you registered and the password MONTREAL375.

WiFi Information

SSID: USNCCM14 Password: MONTREAL375

Events

Opening Reception: The Opening Reception will be held on the 7th floor Terrace of the Palais des Congrès on Sunday, July 16,

beginning at 6:00 pm. Sponsorship of this event by École **Polytechnique Montréal** is greatly appreciated.

USACM Awards Ceremony: USACM Awards will be given during the Opening Ceremony, beginning at 8:30 am on Monday morning. Join us in honoring our colleagues.

Women's Networking Event: The Women's Networking Event will take place on Tuesday evening, beginning at 5:30 pm on the 7^{th} floor Terrace. Check with the registration desk for more details.

AHPCRC Poster Session: The AHPCRC Poster Session, Tuesday afternoon, will feature over 80 posters. Awards to be announced at the Congress banquet on Wednesday night.

Special Talk by NSF Program Manager: Dr. Siddiq Qidwai will present a special talk, "Mechanics Opportunities at NSF" on Monday, July 17, 5:00 pm - 6:00 pm, in Room 517D.

Exhibitors/Sponsors

We welcome the following exhibitors to USNCCM14: Elsevier, Fraunhofer, Michigan Institute for Computational Discovery and Engineering, Sandia National Laboratories, SIAM, and Wiley. We also thank our sponsors: AHPCRC, ETS, Polytechnique Montréal, and McGill University. A special thanks goes to Tourisme Montréal for their support.

Special support is provided from **AHPCRC** for the student poster session and partial support of the Plenary and Semi-Plenary Speakers travel from **Sandia National Laboratories**.

Plenary Speakers

Tarek Zohdi University of California, Berkeley Monday, July 17, 9:00 am, 517BC Chair: J. Tinsley Oden

Mark Ainsworth Brown University Wednesday, July 19, 9:00 am, 517BC Chair: Leszek Demkowicz

Andrew Stuart California Institute of Technology Tuesday, July 18, 9:00 am, 517BC Chair: Thomas J.R. Hughes

Anthony Patera Massachusetts Institute of Technology Thursday, July 20, 9:00 am, 517BC Chair: Marius Paraschivoiu

Semi-Plenary Speakers

Raúl Tempone King Abdullah University of Science and Technology Monday, July 17, 1:30 pm, 517D Chair: Jim Stewart

Ronald E. Miller Carleton University Tuesday, July 18, 1:30 pm, 517D Chair: Ellad Tadmor

Eldad Haber University of British Columbia Wednesday, July 19, 1:30 pm, 517D Chair: Azzeddine Soulaïmani

Marino Arroyo Universitat Politècnica de Catalunya (UPC) -BarcelonaTech Monday, July 17, 1:30 pm, 516BC Chair: Pedro Díez

Beth Wingate University of Exeter Tuesday, July 18, 1:30 pm, 516BC Chair: Clint Dawson

Margot Gerritsen Stanford University Wednesday, July 19, 1:30 pm, 516BC Chair: Charbel Farhat

USNCCM14 Organization

Steven Dufour Marc Laforest Serge Prudhomme

Department of Mathematics and Industrial Engineering École Polytechnique Montréal

USNCCM14 Local Organizing Committee

Yves Bourgault, University of Ottawa Suvranu De, Rensselaer Polytechnic Institute Michel Delfour, Université de Montréal André Fortin, Université Laval Eric Laurendeau, École Polytechnique Montréal Martin Lévesque, École Polytechnique Montréal

USNCCM14 USACM Council and Steering Committee

Officers

President: Leszek Demkowicz, UT Austin Vice-President: John Dolbow, Duke University Secretary/Treasurer: Yuri Bazilevs, UC-San Diego

Board of Directors

Thomas J.R. Hughes, UT Austin J.Tinsley Oden, UT Austin

Siva Nadarajah, McGill University Marius Paraschivoiu, Concordia University Dominique Pelletier, École Polytechnique Montréal Mark S. Shephard, Rensselaer Polytechnic Institute Azzeddine Soulaimani, École de Technologie Supérieure Jean-Yves Trépanier, École Polytechnique Montréal

Members at Large

- K. Garikipati, University of Michigan
- R. Ghanem, USC
- E. Kuhl, Stanford University
- S. Li, UC-Berkeley
- A. Marsden, Stanford University
- H. Park, Boston University
- N. Sukumar, UC-Davis
- J. Zhang, Carnegie Mellon University

USNCCM14 International Scientific Committee

- R. Batra, Virginia Polytechnic Institute and State University J.E. Bishop, Sandia National Laboratories R. de Borst, University of Sheffield J.S. Chen, University of California-San Diego A. Coutinho. COPPE/Universidade Federal do Rio de Janeiro S. De, Rensselaer Polytechnic Institute L. Demkowicz, ICES, UT Austin J. Dolbow, *Duke University* C. Farhat, Sanford University J. Fish, Columbia University R. Ghanem, University of Southern California O. Ghattas, ICES, UT Austin S. Ghosh, Johns Hopkins University S. Govindjee, University of California-Berkeley I. Harari, *Tel Aviv University* T.J.R. Hughes, ICES, UT Austin P. Ladevèze, LMT-Cachan T. Laursen. Khalifa Universitv S. Li, University of California-Berkeley W.K. Liu, Northwestern University H. Mang, Vienna University of Technology
- K. Maute, University of Colorado P. Minev, University of Alberta N. Nigam, Simon Fraser University J.T. Oden. ICES. UT Austin E. Oñate. CIMNE M. Ortiz, California Institute of Technology P. Papadopoulos, University of California-Berkeley H. Park, Boston University A. Patra, University of Buffalo G. Paulino, Georgia Institute of Technology S. Prudhomme, École Polytechnique de Montréal M. Puso, Los Alamos National Laboratory E. Ramm, University of Stuttgart J.N. Reddy, Texas A&M University M. Shephard, Rensselaer Polytechnic Institute J. Stewart, Sandia National Laboratories N. Sukumar, University of California-Davis K. Tamma, University of Minnesota T. Tezduyar, *Rice University* K. van der Zee, University of Nottingham
- P. Wriggers, University of Hannover

Technical Sessions at a Glance

TS1	Technical Session 1	Monday, July 17, 10:15 am – 11:55 am
TS2	Technical Session 2	Monday, July 17, 2:30 pm – 4:10 pm
TS3	Technical Session 3	Monday, July 27, 4:40 – 6:20 pm
TS4	Technical Session 4	Tuesday, July 18, 10:15 am – 11:55 am
TS5	Technical Session 5	Tuesday, July 18, 2:30 pm – 4:10 pm
TS6	Poster Session 6	Tuesday, July 18, 4:30 pm – 6:00 pm
TS7	Technical Session 7	Wednesday, July 19, 10:15 am – 11:55 am
TS8	Technical Session 8	Wednesday, July 19, 2:30 pm – 4:10 pm
TS9	Technical Session 9	Wednesday, July 19, 4:40 pm – 6:20 pm
TS10	Technical Session 10	Thursday, July 20, 10:15 am – 11:55 am

USNCCM14 Minisymposia Session Times

MS	Title	Sessions
001	Reliable Automated Simulation Technologies: A Symposium Celebrating the 65th Birthday of Professor Mark S. Shephard	TS1-TS5, TS7, TS10
101	Advances in Computational Biomechanics	TS1-TS3
102	Computational Bioengineering and Medicine	TS4-TS5
103	Computational Biomechanics of Impact and Injury	TS3-TS5, TS7
104	Computational Mechanobiology of Biological Systems	TS1
105	Direct and Inverse Methods for Cardiovascular and Pulmonary Mechanics	TS8-TS10
106	Image-Based Models for Biomedical Applications	TS5
107	Mechanobiology of Cells, Vesicles and Biomembranes	TS8-TS10
108	Multiscale Modeling in Bio-mechanical Systems	TS1-TS4
201	Advances in High-Order Methods for Computational Fluid Dynamics	TS1-TS5

202	Advances in Meshfree Particle Methods for Fluid Mechanics	TS9-TS10
203	Computational Methods for Hydraulics	TS3-TS5
204	Computational Methods in Environmental Fluid Mechanics	TS8-TS10
205	Computational Microfluids	TS1-TS2
206	Model Reduction in Computational Fluid Dynamics	TS7-TS10
301	Advancements in Hydraulic Fracture Simulation	TS3-TS5, TS7-TS10
302	Advances in Computational Methods for Soil Sciences	TS5
303	Computational Geomechanics	TS1-TS5
304	Computational Methods and Design for Impact and Blast Problems	TS1-TS5, TS7
401	Computational Fracture Mechanics	TS4-TS5, TS7-TS10
402	Modeling and Simulation for Complex Material Behavior	TS7-TS10
403	Modeling and Simulation of Damage and Fracture in Brittle and Quasi-Brittle Materials	TS9-TS10
404	Multiscale and Computational Methods in Failure Mechanics	TS4-TS5, TS7-TS8
405	Peridynamic Modeling and Simulations	TS1-TS3
406	Recent Advances in Computational Fracture Mechanics and Failure Analysis	TS1-TS3
501	Computational Fluid-Structure Interaction: Methods and Applications	TS1-TS5
503	Computational Modeling of Contact and Embedded Interfaces	TS1-TS2
504	Flow-Induced Vibrations: Solution Techniques and Models	TS7
505	Fluid-Structure Interaction Algorithms and Applications	TS7-TS9
506	Free and Moving Boundary Problems: Methods and Applications	TS4-TS5, TS7-TS10
507	Phase-field Modeling and Simulation in Fluids, Solids, and Biomechanics	TS7-TS9
508	Stabilized and Multiscale Methods for Interface Mechanics	TS8-TS9
601	Advances in Computational Methods for Inverse Problems	TS1-TS4
602	Advances in Topology Optimization for Manufacturing	TS5, TS7-TS9
603	Bayesian Statistical Inversion in Engineering Mechanics	TS8-TS9
605	New Trends in Topology Optimization	TS3-TS5, TS7-TS9

701	Advanced Computational Methods and Theories for Predicting Material Behaviors at Various Length Scales	TS1-TS3
702	Advances in Adaptive Methods for Modeling Heterogeneous Microstructures	TS1
703	Classical and Non-classical Plate and Shell Models in Computational Mechanics of Multilayered, Sandwich, and Functionally Graded Composites	TS1-TS2
705	Instabilities in Solids Across the Scales	TS9-TS10
706	Modeling and Simulation for Solidification Processes in Manufacturing	TS9
707	Modeling and Simulation in Additive Manufacturing	TS4-TS5, TS7-TS8
708	Modeling and Simulation of Additive Manufacturing Processe	TS1-TS3
709	Modeling Materials with Coupled Physics	TS2-TS3
710	Modeling of Soft Materials	TS4-TS5
801	Adaptivity for Multiscale Problems	TS1-TS2
802	Advances in Atomistic-to-Continuum Coupling Techniques	TS3-TS5, TS7-TS10
803	Advances in the Modelling of Multi-Scale, Multi-Physics and Multi-Uncertainty Problems	TS7
804	Complex Multi-Physics Coupling Techniques: Advances and Applications	TS3-TS4
805	Computational Modeling of Multi-Functional Materials	TS7-TS9
806	Concurrent Multi-Length Scale Modeling: from Finite Elements to Atoms and Electrons	TS1-TS2
807	Coupled Multiphysics Problems: Discretization Approaches and Solution Methods	TS4-TS5
808	Modeling at the Intersection of First Principles Methods, Mechanics and Mathematics	TS5, TS7-TS10
809	Multi-scale and Multi-physics Computations in Fluids and Solids	TS1-TS2
812	Multiphysics Computation and Coupled Effects	TS8-TS9
813	Multiscale Computational Homogenization for Bridging Scales in the Mechanics and Physics of Complex Materials	TS1-TS5
901	Advanced Computational Methods for Complex Geometry Simulations	TS1-TS2, TS4
902	Advances and Applications of the Generalized/eXtended Finite Element Method	TS1-TS3
903	Advances in Numerical Methods for Linear and Non-Linear Dynamics and Wave Propagation	TS1-TS3
904	BIE/BEM and Their Fast Solution Methods	TS8-TS10

905	Cohesive Zone Models – Fundamentals and Multiscale Applications	TS7
908	Finite Element Methods for Wave Propagation	TS8-TS10
910	Isogeometric Methods	TS1-TS3
911	Isogeometric Methods for Complex Geometries and Multi-Physics Systems	TS4-TS5, TS7
912	Meshfree and Particle Methods: New Developments and Applications	TS1-TS5, TS7-TS8
913	Non-standard Formulations and Discretization Methods for Thin-walled Structures	TS4-TS5
914	Peridynamics and Its Applications	TS5, TS7-TS8
915	Polygonal and Polyhedral Discretizations in Computational Mechanics	TS7-TS10
916	Saddle Point and Mixed Discretization of Variational Problems	TS4-TS5, TS7
1001	Building Advanced Capabilities in Scientific Software	TS10
1002	Computational Methods in Image Analysis	TS8
1003	Enabling Technologies and Simulation Practices for Advanced Scientific and Engineering Computation	TS8-TS10
1005	Symposium on Trends in Unstructured Mesh Generation	TS1-TS3
1101	Advances in Adaptive Approaches for Large-scale Deterministic and Stochastic Problems	TS4-TS5, TS7
1102	Advances in Error Analysis and Computational Aspects of Deterministic and Stochastic PDE Eigenvalue Problems	TS8-TS9
1104	A Posteriori Error Estimation and Adaptivity	TS8-TS10
1105	Data Driven Paradigms and Uncertainty Quantification in Computational Mechanics	TS5, TS7-TS10
1107	Stochastic Methods in Computational Mechanics of Random Materials	TS4-TS5
1108	Uncertainty Propagation and Quantification in Multiscale Simulation of Materials Response, Structural Performance, and Failure	TS1-TS3
1109	Uncertainty Quantification and Stochastic Modeling in Biological Systems	TS7

Monday Plenary Speaker 9:00-9:45 am

Tarek Zohdi

University of California, Berkeley

Multiphysical Simulation for Advanced Additive Manufacturing Processes

Room: 517BC

Abstract: Within the last decade, several industrialized countries have stressed the importance of advanced manufacturing to their economies. Many of these plans have highlighted the development of additive manufacturing techniques, such as 3D printing, which are still in their infancy. The objective is to develop superior products, produced at lower overall operational costs. For these goals to be realized, a deep understanding of the essential ingredients comprising the materials involved in additive manufacturing is needed. The combination of rigorous material modeling theories, coupled with the dramatic increase of computational power can potentially play a significant role in the analysis, control, and design of many emerging additive manufacturing processes. Specialized materials and the precise design of their properties are key factors in the processes. Specifically, particle-functionalized materials play a central role in this field, in three main ways: (1) to endow filament-based materials by adding particles to a heated binder (2) to "functionalize" inks by adding particles to freely flowing solvents and (3) to directly deposit particles, as dry powders, onto surfaces and then to heat them with a laser, e-beam or other external source, in order to fuse them into place. The goal of these processes is primarily to build surface structures, coatings, etc., which are extremely difficult to construct using classical manufacturing methods. The objective of this presentation is to introduce the audience to basic techniques which can allow them to rapidly develop and analyze particulate-based materials needed in new additive manufacturing processes. This presentation is broken into two main parts: continuum and discrete element approaches. The materials associated with methods (1) and (2) are closely related types of continua (particles embedded in a continuous binder) and are treated using continuum approaches. The

materials in method (3), which are of a discrete particulate character, are analyzed using discrete element methods.

Bio: Tarek I. Zohdi received his Ph.D. in 1997 in Computational and Applied Mathematics from The University of Texas at Austin and his Habilitation in General Mechanics from the Gottfried Leibniz University of Hannover in 2002. He is currently a Chancellor's Professor of Mechanical Engineering, Chair of the Computational and Data Science and Engineering Program at UC Berkeley and holder of the W. C. Hall Family Endowed Chair in Engineering. He also holds a Staff Scientist position at Lawrence Berkeley National Labs. His main research interests are in computational approaches for advanced manufacturing and nonconvex multiscale-multiphysics inverse problems, in particular addressing the issue of how large numbers of microconstituents interact to produce macroscale aggregate material behavior. He has published over 135 archival refereed journal papers and five books. In 2000, he received the Zienkiewicz Prize and Medal, which are awarded once every two years, to one post-graduate researcher under the age of 35, by The Institution of Civil Engineers in London, to commemorate the work of Professor O. C. Zienkiewicz, for research which contributes most to the field of numerical methods in engineering. In 2002, he received the Best Paper of the Year 2001 Award in London, at the Lord's Cricket Grounds, for a paper published in Engineering Computations, pertaining to modeling and simulation of the propagation of failure in particulate aggregates of material. In 2003, he received the Junior Achievement Award of the American Academy of Mechanics. The award is given once a year, to one postgraduate researcher, to recognize outstanding research during the first decade of a professional career. In 2008, he was elected Fellow of the International Association for Computational Mechanics (IACM) and in 2009 he was elected Fellow of the United Stated Association for Computational Mechanics (USACM). He was elected President of the USACM in 2012, and served from 2012 to 2014.

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 516A	MS 001	Reliable Automated Simulation Technologies: A Symposium Celebrating the 65th Birthday of Professor Mark S. Shephard Chair(s): Kenneth Jansen		
Keynote Presentation:	OPAL: Bayesian Framework for Model Selection and Quantifying Model Inadequacy	Reliable Automated Simulation Technologies to Aid in Diagnosing and Treating Heart Disease	Two-Way Integration of Mesh Adaptivity with High- Deformation Multi-Material Simulation	Unstructured and Anisotropic Adaptivity for Complex Stochastic Problems
J. Tinsley Oden *, Ernesto Lima, Amir Shahmoradi, B Horger, David Hormuth, Thomas Y		Charles Taylor*	Daniel Ibanez *, Thomas Voth, Glen Hansen	Onkar Sahni *, Jason Li, Alvin Zhang
Room: 514C	MS 101	Advances in Computational E Chair(s): Corey P. Neu and Da		
Keynote Presentation:	Constitutive Modeling of Human Brain Tissue	IMPETUS Interactive MultiPhysics Environment for Unified Simulations	Methodology for Generating Hexahedral Finite Element Meshes of Patient-Specific Cartilage using Image Data from the Osteoarthritis Initiative	
Ellen Kuhl *, Silvia Budday, Gerhard Sommer, F Holzapfel	aul Steinmann, Gerhard A.	Vi Ha*, George Lykotrafitis	David Pierce *, Borja Rodríguez Vila	
Room: 515A	MS 104	Computational Mechanobiolo Chair(s): Elisa Budyn	gy of Biological Systems	
Patterning and Morphogenesis of Cortical Folding	Automated Method for Mechanical Properties Characterization in Tissue- Engineered Cartilage	Dynamic Tumor Growth Modeling with New Vessel Formation and Drug Delivery	Long-Term Study of Bone-on- Chip to Monitor Stem Cell Derived Osteocyte Mechanotransduction	
Sarah Verner *, Shiva Rudraraju, Krishna Garikipati	Ophélie Pollet *, Aurélie Levillain, Christel Henrionnet, Astrid Pinzano, Morad Bensidhoum, Caroline Boulocher, Thierry Hoc	Tae-Rin Lee*, Sung Sic Yoo	Elisa Budyn*, Samantha Sanders, Morad Bensidhoum, Eric Schmidt, Bertrand Cinquin, Patrick Tauc, Hervé Petite	

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM	
Room: 514B	MS 108	Multiscale Modeling in Bio-mechanical Systems Chair(s): Lucy T. Zhang			
Keynote Presentation:	Computational Modeling of Hydrogel-Based Tissue Engineering: En Route to Personalized Regenerative Medicine	Modeling of the Periodic Axon Membrane Skeleton Structure with Measurement of its Mechanical Properties	The Structural Changes of Finger 3 in the Mutated Ankyrin Repeat Domain of the Human TRPV4 Channel Alter ATP Binding Ability	Per-Residue Energetic Analysis Clarifies the Mechanism of the Binding Strength Inside Microtubes	
Franck Vernerey *, Shankar Sridhar, Stephanie Bryant		Yihao Zhang *, Krithika Abiraman, He Li, David Pierce, Anastasios Tzingounis, George Lykotrafitis	Shu-Wei Chang*, Tsu-Hsin Kao	Ning Liu*, Ramana Pidaparti, Xianqiao Wang	
Room: 520A	MS 201	Advances in High-Order Meth Chair(s): Freddie Witherden	ods for Computational Fluid D	ynamics	
Keynote Presentation:	Improved Wall-Modeling for Large Eddy Simulation using the FR/CPR Method	Three-Dimensional High- Order Simulations of Low- Pressure Turbine Blade Cascades	Higher-Order Multi- Dimensional Limiting Strategy for Subcell Resolution in Unstructured Triangular Meshes	Optimization-Based Anisotropic Mesh-Polynomial Adaptation for High-Order Methods	
ZJ Wang* , Jingchang Shi, Hong Yan		Arvind lyer *, Freddie Witherden, Brian Vermeire, Yoshiaki Abe, Ralf-Dietmar Baier, Antony Jameson, Peter Vincent	Hojun You*, Chongam Kim	Nicolas Ringue* , Siva Nadarajah	
Room: 520C	MS 205	Computational Microfluidics Chair(s): Thomas Gervais			
Keynote Presentation:	Numerical Modeling of Inertial Focusing Effects in Curved Microfluidic Flows	Modelling Microfluidic Sample Traps to Optimize Trapping and Culture of Ex Vivo Biological Samples	Effect of Geometry of Microfluidic on Hydrodynamic Single Cell Trapping		
Liviu Clime *, Xuyen Dai Hoa, Keith J. Morton		Nassim Rousset*, Frédéric Monet, Thomas Gervais	Ahmad Sohrabi Kashani*, Muthukumaran Packirisamy		

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM	
Room: 520E MS 303		Computational Geomechanics Chair(s): WaiChing Sun			
Face Stability Analysis in Mechanized Tunnelling: A Novel FE Approach Based on Incompatible Modes and Strong Discontinuity Kinematics	A Framework for the Modeling of Gypsum Cavity Dissolution within Geomechanical Studies	A Bounding Surface Plasticity Model for Natural Clay Calibration, Validation and Application	Dynamic Rupture Simulation of a Tunnel Subjected to Fault Displacements using Parallel 3D-FEM		
Abdullah Alsahly*, Callari Carlo, Gunther Meschke	Farid Laouafa*, Michel Quintard	Thomas Barciaga *, Tom Schanz	Yuta Mitsuhashi *, Gaku Hashimoto, Hiroshi Okuda, Fujio Uchiyama		
Room: 518C	MS 304	Computational Methods and Design for Impact and Blast Problems Chair(s): Miguel Pando			
Keynote Presentation:	Computational Design of Hierarchical Structures for Crashworthiness Criteria	Crashworthiness Optimization of Horsetail-Bionic Thin- Walled Structures	Intrinsic Cohesive Modeling of the Impact Cracking of Laminated Glass	Assessment of Soil Inertia Effects in Dynamic Analysis of Piles under Impact Loading	
Qing Li* , Guangyong Sun, Jianguang Fang		Hongbin Fang *, Youye Xiao, Hanfeng Yin, Guilin Wen	Shunhua Chen *, Shinobu Yoshimura, Tomonori Yamada	Miguel Pando *, Gustavo Pacheco, Luis Suarez	
Room: 521BC	MS 405	Peridynamic Modeling and Si Chair(s): Pablo Seleson	mulations		
Keynote Presentation:	Stabilization of Peridynamic Correspondence Material Models	Peridynamic Models for Anisotropic Media	Finite Deformation Constitutive Models and Mechanics of Peridynamic Mixtures		
Stewart Silling*		Pablo Seleson*, Jeremy Trageser, Max Gunzburger	John Foster*, Xiao Xu		

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM	
Room: 518B	MS 406	Recent Advances in Computational Fracture Mechanics and Failure Analysis Chair(s): Hiroshi Okada			
Numerical Modeling of Void Coalescence and Shear Localization in Ductile Solids	Evaluation of Elastic-Plastic Fracture Simulation for Compact Tension Specimen Subjected to Low Cycle Fatigue	Parallel Elastic-Plastic Analysis using a Domain Decomposition Method with a Nonlinear Solver			
Xiaosheng Gao*, Tuo Luo	Yoshitaka Wada*	Yasunori Yusa *, Hiroshi Okada, Tomonori Yamada, Shinobu Yoshimura			
Room: 520D	MS 501	Computational Fluid-Structure Interaction: Methods and Applications Chair(s): TBD			
Keynote Presentation:	An Immersed Boundary Formulation for Simulating High-Speed Compressible Viscous Flows with Moving Solids	Anderson-Accelerated Spatial Coupling of Lattice Boltzmann and Navier-Stokes Solvers	An Embedded Robin Boundary Method for Incompressible Fluid- Structure Interaction Problems with Large Deformation	Full-Eulerian XFEM for Fluid- Structure Interaction Analysis	
Romesh Batra* , Yegao Qu		Philipp Neumann* , Benjamin Uekermann	Shunxiang Cao *, Alex Main, Kevin Wang	Toshiki Nagai*, Kurt Maute	
Room: 520F	MS 503	Computational Modeling of C Chair(s): Michael Puso	ontact and Embedded Interfac	es	
Liquid-Solid Contact: Algorithms for Sticking and Sliding	Multigrid Methods for Crack Propagation and Contact	Modeling Contact Interfaces by Considering Structural Anisotropy and Plasticity	Frictional Contact on a Rigid Obstacle for the Particle- Difference Method	Applying Projection-Based Reduced-Order Modeling to the Constrained System with Lagrange Multipliers	
Roger Sauer*	Cyrill von Planta *, Rolf Krause, Alena Kopanicakova, Patrick Zulian	George Michaloudis* , Alexander Konyukhov, Norbert Gebbeken	Tod Laursen *, Tae-Yeon Kim, Dhafer Khalefa Jadaan, Jeong- Hoon Song	Euiyoung Kim*, Maenghyo Cho	

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM	
Room: 524C MS 601		Advances in Computational Methods for Inverse Problems Chair(s): Paul Barbone			
Keynote Presentation:	Multifrequency Interferometric Imaging with Intensity-Only Measurements	A Linear Sampling Method for Through-the-Wall Radar Detection	Near-Field Equation for an Elastic Half-Space from the View Point of the Far-Field Properties of Green's Function	Characterization of Near- Surface Road Cavity using an Elastic Wave Full-Waveform Inversion Method	
Chrysoula Tsogka*, Miguel Moscoso, Alexei Novikov, G	George Papanicoloau	Aihua Wood*, Matthew Charnley	Terumi Touhei *, Taizo Maruyama	Jun Won Kang *, Boyoung Kim, Seungwook Youn, Seong-Hoon Kee, Haesang Jeong	
Room: 523A	MS 701	Advanced Computational Methods and Theories for Predicting Material Behaviors at Various Length Scales Chair(s): Jeong-Hoon Song			
Reduced Order Variational Multiscale Enrichment Method (ROVME) for Coupled Thermo-Mechanical Problems	Multiscale Thermodynamics: Toward a Precise Description of the Microstructural Evolution of Complex Materials	A Micromorphic Computational Homogenization Framework for Heterogeneous Materials	A Homogenized Gradient Elasticity Model for Plane Wave Propagation in Bi- Laminate Composites	New Particle Difference Algorithm for Material Nonlinear Problem	
Caglar Oskay*, Shuhai Zhang	Jean-Philippe Harvey *, Aimen Gheribi	Leong Hien Poh*, Raja Biswas	Swee Hong Tan *, Leong Hien Poh	Young-Cheol Yoon*, Jeong- Hoon Song	
Room: 523B	MS 702	Advances in Adaptive Method Chair(s): Yan Azdoud and Co	ds for Modeling Heterogeneous Ieman Alleman	s Microstructures	
Integrated Computational Materials Engineering	Modeling the Effects of Microstructure on Localization in Polycrystalline Stainless Steel	Recent Advances in the Full Field Modeling of Recrystallization and Grain Growth using the Level Set Approach	Developing Physically-Based Three Dimensional Polycrystalline Microstructures	The Adaptive Wavelet Enhancement of the Crystal Plasticity Finite Element Method	
Karel Matous*	Coleman Alleman *, James Foulk, Alejandro Mota, Hojun Lim, David Littlewood	Daniel Pino Muñoz *, Marc Bernacki, Nathalie Bozzolo, Thomas Toulorge, Charbel Moussa, Ludovic Maire, Julien Fausty	Hojun Lim*, Fadi Abdeljawad, Steve Owen, Jacob Gruber, Garritt Tucker, James Foulk	Yan Azdoud *, Jiahao Cheng, Somnath Ghosh	

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM	
Room: 525A	MS 703	Classical and Non-classical Plate and Shell Models in Computational Mechanics of Multilayered, Sandwich, and Functionally Graded Composites Chair(s): Alexander Tessler			
A Nonlocal Higher-Order Zig- Zag Theory Based on a Strain Gradient Elasticity	Static Analysis of Sandwich Beams Including the Effect of Adhesive Layers by using the Mixed Refined Zigzag Theory	Buckling Behavior of Thin Walled Composite Box Beams with Variable Stiffness	A Plate Element Formulation for Modeling Progressive Damage and Failure of Shear Deformable Laminates		
Jun-Sik Kim*	Marco Gherlone*	Taner Timarci *, Muhsin Gökhan Gunay	Devlin Hayduke*		
Room: 518A	MS 708	Modeling and Simulation of Additive Manufacturing Processes Chair(s): Neil Hodge			
Global Sensitivity Analysis of a Selective Laser Melting Finite Element Model: Identification of Influential Parameters	Modelling Powder Bed Fusion Feature Creation	A Semi-Analytical Model of Selective Laser Melting Process	Numerical Simulation of Temperature Fields in Powder Bed Fusion Process by using Hybrid Point and Line Heat Source Model	Temperature and Distortion Simulation for Laser Powder Bed Fusion Parts	
Claire Bruna-Rosso *, Ali Gokhan Demir, Maurizio Vedani, Barbara Previtali	Mustafa Megahed *, Wolfgang Ottow	Can Ayas*, Yabin Yang	Zhibo Luo *, Yaoyao Zhao	Erik Denlinger*, Pan Michaleris	
Room: 516D	MS 801	Adaptivity for Multiscale Problems Chair(s): Kristoffer Van Der Zee			
Keynote Presentation:	Adaptive Multiscale Methods for Heterogeneous Flows	A Posteriori Error Estimation for Multiscale Computations Based on MsFEM	A New Paradigm for the Numerical Approximation of Sign-Changing Problems		
Eric Chung*		Frédéric Legoll*, Ludovic Chamoin	Simon Lemaire*, Assyr Abdulle		

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 515C	MS 806	Concurrent Multi-Length Scale Modeling: from Finite Elements to Atoms and Electrons Chair(s): Qing Peng and Suvranu De		
Keynote Presentation:	Molecular Dynamics Simulations of a Porous Nano-Fluidic Desalination Device	Scale-Bridging for Multiscale Modeling of Reactive Materials	Static and Dynamic Applications of Atomistic- Based Boundary Element Method	
Dandan Lyu* , Shaofan Li		Tiange Li*, Shaofan Li	Xiaojie Wu*, Xiantao Li	
Room: 515B	MS 809	Multi-scale and Multi-physics Computations in Fluids and Solids Chair(s):Yozo Mikata		
Effective Thermal and Elastic Properties of a Composite with Spheroidal and Ellipsoidal Inhomogeneities	Nano-Motions of FePd Nanorobots Subjected to Applied Magnetic Field by Molecular Dynamics Mode	The Schwarz Alternating Method in Solid Mechanics	Monolithic Linear Equation Solver for Parallel Finite Element Method	
Yozo Mikata*	Minoru Taya*, Takehiro Matsuse	Alejandro Mota *, Irina Tezaur, Coleman Alleman	Naoki Morita *, Gaku Hashimoto, Hiroshi Okuda	
Room: 516E	MS 813	Multiscale Computational Homogenization for Bridging Scales in the Mechanics and Physics of Complex Materials Chair(s): Julien Yvonnet		
Keynote Presentation:	Microstructure Evolution in Ferroelectrics by Improved Spectral Methods for Computational Homogenization	Intercalation Driven Porosity Effects in Coupled Continuum Models for the Electrical, Chemical, Thermal and Mechanical Response of Battery Electrode Materials	Higher Order Homogenization for Piezoelectric Periodic Composites	Non-Intrusive Local-Global Substitution Method: Extension to Multi-Time and Jump Cycle Coupling for the Fatigue Prediction of Viscoplastic-Structures
Dennis Kochmann *, A. Vidyasagar, Wei Lin Tan		Zhenlin Wang *, Jason Siegel, Krishna Garikipati	Luigi Gambarotta *, Andrea Bacigalupo	Olivier Allix *, Maxime Blanchard, Pierre Gosselet, Geoffrey Desmeure

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 522BC	MS 901	Advanced Computational Methods For Complex Geometry Simulations Chair(s): Antonio Gil and Guglielmo Scovazzi		
Recent Developments and Usage of the Composite Tetrahedral Element in Solid Mechanics Applications	A Dynamic Variational Multiscale Method for Viscoelasticity using Linear Tetrahedral Elements	Variational Multiscale Method for Incompressible Solid Dynamics with Application to Biological Tissues	F-bar Aided Edge-Based Smoothed Finite Element Method with 4-Node Tetrahedral Elements for Viscoelastic Large Deformation Problems	
Jakob Ostien*, James Foulk III, Alejandro Mota, Michael Veilleux, Nathan Crane	Nabil Abboud*, Oriol Colomes, Guglielmo Scovazzi	Ju Liu *, Vijay Vedula, Alison Marsden	Yuki Onishi*	
Room: 522A	MS 902	Advances and Applications of the Generalized/eXtended Finite Element Method Chair(s): Armando Duarte		
Keynote Presentation:	Assessment of Enriched Finite Element Discretizations for Weak Discontinuities	Higher-Order Conformal Decomposition Finite Element Method (CDFEM) as an Alternative for XFEM	A Stabilised Cut Finite Element LaTin Method for Multiple Unilateral Contact Problems	
David Noble* , Kurt Maute		Thomas-Peter Fries*	Susanne Claus *, Pierre Kerfriden	
Room: 524B	MS 903	Advances in Numerical Methods for Linear and Non-Linear Dynamics and Wave Propagation Chair(s): Alexander Idesman		Dynamics and Wave
Keynote Presentation:	A New Accurate Numerical Approach to Wave Propagation, Structural Dynamics and Heat Transfer Problems	Heterogeneous Asynchronous Time Integrator for Impact and Contact Dynamics	The Shifted Boundary Method: A New Approach to Embedded Domain Computations	Higher-Order Elements for Explicit Solid Dynamics
Alexander Idesman*		Anthony Gravouil *, Fatima- Ezzahra Fekak, Michael Brun, Bruno Depale	Ting Song *, Alex Main, Guglielmo Scovazzi	Stephen Beissel *, Timothy Holmquist

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 524A	MS 910	Isogeometric Methods Chair(s): Thomas J.R. Hughes		
Keynote Presentation:	A Stress Recovery Procedure for Cost-Effective Isogeometric Analysis of Composite Plates	A Variational Method to Avoid Locking Independent of the Discretization	Parallelization of Numerical Integration Algorithm for rIGA using a Fast Quadrature	Alternating Direction Isogeometric L2 Projections in Cloud Environment
Alessandro Reali*, John-Eric Dufour, Pablo Antolin, Al Ferdinando Auricchio	essia Patton, Giancarlo Sangalli,	Bastian Oesterle*, Simon Bieber, Ekkehard Ramm, Manfred Bischoff	Maciej Wozniak *, Maciej Paszynski	Grzegorz Gurgul *, Marcin Los, Danuta Szeliga, Maciej Paszynski
Room: 519A	MS 912	Meshfree and Particle Methods: New Developments and Applications Chair(s): J.S. Chen		plications
A Reproducing Kernel Particle Method Framework for Modeling Failure of Solids Subjected to Blast Loadings	Meshfree Modeling of Penetration of a Self- Consolidating High-Strength Concrete	A Nonlocal Updated Lagrangian Particle Hydrodynamics Method and Simulation of Underwater Explosion	Generalization of the Ordinary State Based Peridynamic Model for Isotropic Linear Viscoelasticity	Penetration Modeling of Ultra- High Performance Concrete using a Multiscale Meshfree Method
J.S. Chen *, Guohua Zhou, Mike Hillman	Jesse Sherburn *, William Heard, Sean Wade, Brett Williams	Qingsong Tu *, Yumeng Hu, Shaofan Li	Rolland Delorme *, Ilyass Tabiai, Louis Laberge Lebel, Martin Lévesque	Paul Sparks *, Jesse Sherburn, William Heard, Brett Williams, Patrick Kieffer
Room: 514A	MS 1005	Symposium on Trends in Uns Chair(s): Franck Ledoux	structured Mesh Generation	
Keynote Presentation:	Geometry and Mesh Generation for Representative Volume Elements in Computational Materials Modeling	Hybrid CPU/GPU Parallel Unstructured Mesh Adaptation	A Scalable Generic Mesh Data Structure for Multicore Architecture	Converting Faceted Data to B-Reps
Steven J. Owen *, James W. Foulk, Benjamin Reedlu Hojun Lim	n, Corey Ernst, Coleman Alleman,	François Guibault *, William Bussire	Nicolas Le Goff *, Franck Ledoux	Paul Stallings*

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 525B	MS 1108	Uncertainty Propagation and Quantification in Multiscale Simulation of Materials Response, Structural Performance, and Failure Chair(s): Jacob Hochhalter		
Keynote Presentation:	Polynomial Chaos for the Multiscale Characterization of Material Response and Failure under Uncertainty	Efficient Uncertainty Propagation for High Fidelity Crack Growth using Stochastic Reduced-Order Models	Propagating Stochastic Manufacturing Processes into Risk Predictions for Gas- Turbine Engines	An Adaptive Approach with Local Reduced Basis Approximation for the Solution of PDEs with Uncertain Inputs
Roger Ghanem*, Loujaine Mehrez, Venkat Aitharaju,	William Rodgers	James Warner*, Patrick Leser, Jacob Hochhalter	James Sobotka*, Michael Enright, Kwai Chan, Craig McClung, John McFarland, Jonathan Moody	Wilkins Aquino*, Zilong Zou

Monday Semi-Plenary Speakers 1:30-2:15 pm

Marino Arroyo Universitat Politècnica de Catalunya (UPC) BarcelonaTech

Mathematical Modeling and Simulation of the Cell Envelop, an Active and Adaptable Biological Interface

Room: 516BC

Abstract: The cell envelop is an active and adaptable interface that plays a fundamental role in many biological events. To name a few, it determines cell shape and mechanics, controls the way cells adhere to each other, drives cell division and motility, and controls the structure and remodeling of multicellular tissues. Fundamental mechanical and chemical determinants of its biological function can be described with mathematical models involving partial differential equations on curved surfaces coupled with the geometric evolution laws for those surfaces. In this talk, I will describe instances of such models coupling chemistry, elasticity, hydrodynamics and active force generation, their numerical discretization, and how they can be used to connect with experiments and understand various phenomena in cell mechanobiology.

Bio: Marino Arroyo is Associate Professor at the Universitat Politècnica de Catalunya (UPC), where he is a member of the Laboratory of Computational Methods and Numerical Analysis (LaCaN) group. He is also affiliated to the Institute for Bioengineering of Catalonia (IBEC). Before joining the UPC, he obtained a PhD from Northwestern University and was a postdoctoral scholar at the California Institute of Technology (Caltech). He has been awarded the O. C. Zienkiewicz Award for Young Scientists in Computational Engineering Sciences by ECCOMAS (2010), two ICREA Academia Awards (2009, 2015), and the ASME/BOEING Structures and Materials Award (2003). He was awarded by the European Research Council a Starting Grant in 2009 and a Consolidator Grant in 2016. His research goal is to develop theories and computational methods to understand the small-scale mechanics of materials and biological systems, with a recent emphasis on cell and tissue mechanobiology and bio-inspired materials.

Raúl Tempone King Abdullah University of Science and Technology

Hierarchical Sampling Methods for Forward and Inverse Problems

Room: 517D

Abstract: We will first recall, for a general audience, the use of Monte Carlo and Multi-level Monte Carlo (MLMC) methods in the context of Forward Uncertainty Propagation. Then, we will move on to Multi-Index Monte Carlo (MIMC) and Multi-Index Stochastic Collocation (MISC) methods for computing statistics of the solution of a Partial Differential Equation with random data. MIMC is both a stochastic version of the combination technique introduced by Zenger, Griebel, and collaborators, and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Instead of using first-order differences as in MLMC, MIMC uses mixed differences to dramatically reduce the variance of the hierarchical differences, thus yielding improved convergence rates. MISC is a deterministic combination technique that also uses mixed differences to achieve better complexity than MIMC, provided enough regularity. Moreover, in the optimal case, the convergence of MISC is dictated by the convergence of the deterministic solver applied to a onedimensional spatial problem. Throughout the presentation, we will discuss several applications, including some arising from Inverse Problems and Optimal Experimental Design settings.

Bio: Raul Tempone is an applied mathematician, recognized for his contributions to the development and rigorous analysis of numerical methods for deterministic and stochastic problems arising in science and engineering. He is well known for his works on adaptive algorithms for stochastic differential equations, stochastic Galerkin and stochastic collocation methods for random partial differential equations, and multilevel Monte Carlo hierarchical sampling techniques for stochastic problems, among others.

These methods provide substantial computational savings and are crucial for applications described in terms of differential equations and subject to uncertain evolution. Formulations including uncertainty have been increasingly used in many engineering applications, and they are useful in other applications as well, including, among others, finance, biology, social science as well as chemistry and physics.

Raul Tempone graduated as an industrial engineer in 1995 at the University of the Republic, Montevideo, Uruguay. After his graduation he worked on the optimal dispatch of electricity for the Uruguayan system using techniques from nonlinear stochastic programming and visited the Royal Institute of Technology (KTH) in Stockholm, Sweden, to study further numerical analysis. He obtained a Master in Engineering Mathematics in 1999 (inverse problems for incompressible flows, supervised by Jesper Oppelstrup, KTH) and a Ph.D. in Numerical Analysis in 2002 (a posteriori error estimation and control for stochastic differential equations, supervised by Anders Szepessy, KTH). He later moved to ICES, UT Austin, to work as a postdoctoral fellow from 2003 until 2005 in the area of numerical methods for PDEs with random coefficients (supervised by Ivo Babuska and Mary Wheeler). In 2005 he became an assistant professor (joint appointment) with the School of Computational Sciences and the Department of Mathematics at Florida State University, Tallahassee, In 2007 he was awarded the first Dahlquist fellowship by KTH and COMSOL for his contributions to the field of numerical approximation of deterministic and stochastic differential equations. In 2009 he became an Associate Professor (founding faculty) with King Abdullah University of Science and Technology and later in 2015, he was promoted there to the rank of Full Professor in Applied Mathematics. Since 2012, he has directed the KAUST Strategic Research Center for Uncertainty Quantification.

He has received numerous accolades from his peers: he is a highly cited author, is regularly invited as keynote speaker at conferences from several distinct areas and holds honorary appointments as well. For instance, he was elected by Society for Industrial and Applied Mathematics (SIAM) members as the Technical Director of the SIAM Uncertainty Quantification group, a position he held during the term 2013-2014.

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 516A	MS 001	Reliable Automated Simulation Technologies: A Symposium Celebrating the 65th Birthday of Professor Mark S. Shephard Chair(s): Kenneth Jansen		
Reliable Large Scale Industrial Design at Petascale and Beyond	Barrier-Free Parallel Adaptive Scheme for Asynchronous Spacetime Discontinuous Galerkin Methods	Thermal Modelling and Simulation of Selective Laser Melting Additive Manufacturing	Multilevel Decomposition and Compression on Unstructured Grids	
Martin Berzins*	Robert Haber *, Amit Madhukar, Reza Abedi, Volodymyr Kindratenko	Antoinette Maniatty *, Souvik Roy, Mario Juha	Ben Whitney*, Mark Ainsworth	
Room: 514C	MS 101	Advances in Computational Biomechanics Chair(s): David M. Pierce and Corey P. Neu		
Full-Field 4D Measurements of Acceleration-Induced Deformation in the Living Human Brain	Simulation of Harmonic Shear Waves in the Human Brain and Comparison with Measurements from Magnetic Resonance Elastography	Three-Dimensional Elastic Modulus Reconstruction Based on Magnetic Resonance Imaging	Mechanical Properties of Human Ascending Aorta using Biaxial Tensile Testing	
Arnold Gomez *, Andrew Knutsen, Dzung Pham, Philip Bayly, Jerry Prince	Nitin Daphalapurkar *, Yang Li, Ruth Okamoto, Andrew Badachhape, Philip Bayly, K.T. Ramesh	Luyao Cai *, Claus B.W. Pedersen, Corey P. Neu	Samaneh Sattari*, Katherine Olsen, Taisyia Sigaeva, Jehangir J. Appoo, Elena S. Di Martino	
Room: 514B	MS 108	Multiscale Modeling in Bio-mo Chair(s): Ying Li	echanical Systems	
Keynote Presentation:	Multiscale Computational Design of Bio-Inspired Materials with Advanced Mechanical Functions	An Interfacial Zone Model for Intercellular Interaction Modeling in Epithelial Cells	Discrete Particle Techniques For Multiscale Modeling Of Fragmentation of Blood Clots	Simulating Drug-Affected Cardiac Electromechanics
Zhao Qin*		Xiaowei Zeng*, Liqiang Lin	Debanjan Mukherjee *, Shawn C. Shadden	Khalil Elkhodary *, Noha Shalaby, Nejib Zemzemi

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 520A	MS 201	Advances in High-Order Methods for Computational Fluid Dynamics Chair(s): Brian Vermeire		
On the Impact of Number Representation for High- Order Implicit Large Eddy Simulations	High-Fidelity Simulation of a Golf Ball Trajectory using a High-Order Overset Method	Discontinuous Galerkin Method for Predicting Heat Transfer in Hypersonic Environments	A Continuous Mesh Model for Goal-Oriented hp-Adaptation	A High-Order Discontinuous Galerkin Method for Variable- Coefficient Advection- Diffusion Problems
Freddie Witherden*, Antony Jameson	Jacob Crabill*, Freddie Witherden, Antony Jameson	Eric Ching *, Yu Lv, Matthias Ihme	Ajay Rangarajan*, Georg May	Raunak Borker*, Charbel Farhat, Radek Tezaur
Room: 520C	MS 205	Computational Microfluidics Chair(s): Liviu Clime		
2D Continuum Model for Simulating Angiogenesis Studies in Microfluidic Systems	Multiphysics Modelling of Very Low Flow Rate Micropump Based on Thermal and Mechanical Actuation	Characterization of Self- Coalescence in Microfluidic Capillary Flow via Finite Element Method		
Edmond W. K. Young* , Nikola Kuzmic	Amine Miled*, Hamza Landari	Samuel Castonguay *, Onur Gôkçe, Yuksel Temiz, Emmanuel Delamarche, Thomas Gervais		
Room: 520E	MS 303	NETComputational Geomech Chair(s): Pania Newell	anics	
A Bounding Surface Plasticity Model for Natural Clay Calibration, Validation and Application	A Coupled Numerical Model for Discrete Fractures in Deformable Geothermal Reservoirs	Modelling Hydraulic Fracturing as a Transition from Diffuse Micro-Cracking to Fracture Localization		
Thomas Barciaga *, Tom Schanz	Saeed Salimzadeh *, Maiya Medetbekova, Hamidreza M. Nick	Mahdad Eghbalian *, Richard Wan		

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 518C	MS 304	Computational Methods and Design for Impact and Blast Problems Chair(s): David C. Weggel		
Keynote Presentation:	Modeling the Blast Resistance of Reinforced Concrete Bridge Columns under Uncertainty	Use of Finite Element Analysis to Model the Potential Damage Caused to Passenger Railcars by the Use of Explosives	Internal Explosion Simulation of Earth Covered Composite Arch System; the Comparison between MMALE, PBM and CONWEP+GP Methods	Efficient High Fidelity Nonlinear Dynamic Analysis of Light Gauge Steel Walls Subjected to Blast Loading
Christopher Eamon*, Ahmad Alsendi		lan Bruce *, Przemyslaw Rakoczy, Devon Wilson	Sze Dai Pang*	David Weggel *, Ahmed Khalil, Nabil Rahman, Matt Whelan
Room: 521BC	MS 405	Peridynamic Modeling and Si Chair(s): Florin Bobaru	mulations	
Realistic Crack Patterns Obtained using an Approach Coupling Finite Element Method and Peridynamics	Multi-Scale Simulation of Rubber Fracture using Space-Time FEM and Non- Ordinary State-Based Peridynamics	An Intermediate Homogenization Approach for Peridynamic Modeling of Failure in Heterogeneous Materials	Experimental Validation of Elastic State-Based Peridynamic for PMMA and Epoxy Materials	Electromechanical Peridynamic Modeling of Deformation and Damage Sensing in Polymer Bonded Explosive Materials
Mirco Zaccariotto *, Davide Tomasi, Ugo Galvanetto	Shogo Wada *, Dong Qian	Ziguang Chen *, Sina Niazi, Florin Bobaru	Patrick DiehI *, Ilyass Tabiai, Martin Lévesque	Gary Seidel*, Naveen Prakash
Room: 518B	MS 406	Recent Advances in Computa Chair(s): Xiaosheng Gao	ational Fracture Mechanics and	I Failure Analysis
Development of a Three- Dimensional Crack Analysis System using XFEM and Evaluation of its Accuracy	Fatigue Crack Growth Simulation with Crack Closure Effect using S-Version FEM	An Edge-Based Smoothed Finite Element Method for Crack Growth Simulation		
Toshio Nagashima*	Yuto Shinozaki *, Akiyuki Takahashi, Yuichi Shintaku	Wei Xie*, Xudong He		

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 520D	MS 501	Computational Fluid-Structur Chair(s): TBD	e Interaction: Methods and Ap	plications
An Integrated Approach for Fluid-Structure Interaction: Uncertainty Quantification, Bayesian Inference, Scalable Algorithms for High Performance Computing and Wind Tunnel Testing	FSI Framework for Wind Energy and Aerospace Engineering Applications: from Unsteady Aerodynamics to Damage Prediction	Analysis of Flapping Motion Considering Kinematic Optimization by Partitioned Iterative FSI Analysis System	Wind-Structure Interaction as an Aid to Establish the Design Wind Pressures of Tensile Membrane Structures	Generation of Inflow Boundary Conditions as Multivariate Stochastic Process for LES of ABI Flows
Abhijit Sarkar*, Rimple Sandhu, Leandro Jose Rocha da Costa, Brandon Robinson, Anton Matachniouk, Sandip Chajjed, Philippe Bisaillon, Ajit Desai, Mohammad Khalil, Chris Pettit, Dominique Poirel	Artem Korobenko*	Shinobu Yoshimura *, Giwon Hong, Tomonori Yamada, Naoto Mitsume	J. Gerardo Valdés-Vázquez*, A. David García-Soto, Alejandro Hernández-Martínez, L. Francisco Gay-Alanís	Girma Bitsuamiak* , Abiy Melaku
Room: 520F	MS 503	Computational Modeling of C Chair(s): Tod Laursen	ontact and Embedded Interface	es
Fundamental Basis for Computational Modeling of Contact in Wire Ropes and Knots	An Embedded Mesh Coupling of Overlapping Lagrange and ALE Meshes with Unilateral Type Contact Constraints	Surface Sensing of Atomic Behavior of Polymer Nanofilms via Molecular Dynamics Simulation	A Novel Constraint Enforcement Method for Implicit Contact Mechanics	Verification of Contact Stress in Elasticity Using a Surrogate Formulation
Alexander Konyukhov*	Mike Puso *, Paul Tsuji, Ben Liu, Ed Kokko	Ling Dai*	Steven Wopschall* , Mark Rashid	Zhaocheng Xuan*
Room: 524C	MS 601	Advances in Computational Methods for Inverse Problems Chair(s): Assad Oberai		
Keynote Presentation:	Multilevel Monte Carlo Methods for Bayesian Inference	Inverse Monte Carlo Grain Growth Analysis for Process Design	Gradient-Based Methods for Detecting the Effective Dimension of Nonlinear Bayesian Inverse Problems	Inverse Problems in Highly Heterogeneous Media
Kody Law*		Yixuan Tan *, Antoinette Maniatty, John Wen, Chengjian Zheng	Olivier Zahm *, Youssef Marzouk, Tiangang Cui, Kody Law	Paul E. Barbone *, Danial Panahandeh, Bojan Guzina

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 523A	MS 701	Advanced Computational Methods and Theories for Predicting Material Behaviors at Various Length Scales Chair(s): Caglar Oskay		
Application of the Particle Difference Method (PDM) for Predicting Solidification of Polycrystalline via Diffusive Interface Approach	A Multi-Scale Modeling of Strain Path Effects, Laminar Structure and Texture Evolution in Wire Drawing Process	Modeling Heterogeneities Effects on Phase Transformation during Quenching of Large Size Forged Steel Ingots		
Jeong-Hoon Song *, Ashkan Almasi, Tae-Yeon Kim, Young- Cheol Yoon	Guangliang Zhang*	Yassine Bouissa*, Mohammad Jahazi, Henri Champliaud, Louis- Philippe Lapierre-Boire, Jean- Benoît Morin, Nicolas Poulain		
Room: 525A	MS 703	Classical and Non-classical Plate and Shell Models in Computational Mechanics of Multilayered, Sandwich, and Functionally Graded Composites Chair(s): Marco Gherlone		
Exact Transfer- and Stiffness- Matrix for the Composite Beam-Column with Refined Zigzag Kinematics	An Inverse Finite Element Method Based on Refined Zigzag Theory for Structural Health Monitoring of Laminated Composite and Sandwich Shell Structures	Improved Thermo-Mechanical Analysis of Laminated Composite Structures using the New Enhanced First- Order Shear Deformation Theory	Cohesive Fracture of Multilayered Beams Through a Homogenized Structural Theory	Numerical Analysis of Plane Problems of Viscoelastic Functionally Gradient Material Based on a Temporally- Piecewise Adaptive Algorithm
Heinz Wimmer *, Karin Nachbagauer	Alexander Tessler *, Adnan Kefal, Erkan Oterkus	Jang-Woo Han *, Jun-Sik Kim, Maenghyo Cho	Hossein Darban *, Roberta Massab	Haitian Yang *, Linlin Zhang, Yiqian He, Weian Yao
Room: 518A	MS 708	Modeling and Simulation of Additive Manufacturing Processes Chair(s): Robert Ferencz		
Keynote Presentation:	Goals of the Exascale Additive Manufacturing Project (ExaAM)	Part-Level Finite Element Simulation of Selective Laser Melting	Mesoscopic Modeling of Powder-Bed-Based Additive Manufacturing	A Computationally Efficient Process Modelling Approach for Selective Laser Melting
John Turner*, James Belak, Sudarsanam Babu, Nathan Barton, Curt Bronkhorst, Neil Carlson, Jean-Luc Fattebert, Neil Hodge, Wayne King, Lyle Levine, Christopher Newman, Balasubramaniam Radhakrishnan		Neil Hodge*, Robert Ferencz	Matthias Markl*, Carolin Körner	Yabin Yang*, Can Ayas

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 523B	MS 709	Modeling Materials with Coupled Physics Chair(s): Stephan Rudykh		
Keynote Presentation:	A Laminate-Based Computational Model for Ferroelectric Single Crystals and Ceramics	Electro- and Magneto- Mechanical Coupling and Instabilities in Dielectric Elastomers and Magnetorheological Elastomers	PDE-Constrained Optimization Framework for the Design of Heterogeneous Elastic Acoustic Cloaks	
Andreas Menzel*, Dinesh Dusthakar, Bob Svendsen		Stephan Rudykh *, Artemii Goshkoderia	Clay Sanders *, Wilkins Aquino, Timothy Walsh	
Room: 516D	MS 801	Adaptivity for Multiscale Problems Chair(s): Frédéric Legoll		
Adaptivity through Localization in Model Reduction for Parabolic Problems	Certified Computations with PGD Model Reduction in the MsFEM Framework			
Felix Schindler*, Mario Ohlberger, Stephan Rave	Ludovic Chamoin*, Frédéric Legoll			
Room: 515C	MS 806	Concurrent Multi-Length Scal Chair(s): Shaofan Li and Qing	le Modeling: from Finite Eleme J Peng	nts to Atoms and Electrons
Scale-Bridging for Multiscale Modeling of Reactive Materials	A Plate Model for Multilayer Graphene Sheets and Its Application to Analyzing Wrinkle Structure	Hydrogen Assisted Cracking in HCP-Zirconium: a Quasi- Continuum Density Functional Theory (QCDFT) Study		
Jaroslaw Knap*, Kenneth W. Leiter, Brian C. Barnes, Richard Becker, Joshua C. Crone	Moonhong Kim*, Seyoung Im	Qing Peng*		

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 515B	MS 809	Multi-scale and Multi-physics Computations in Fluids and Solids Chair(s): Abhijit Dasgupta		
Simulation of Steady-State Creep Behavior of Poly- Crystalline Solder Joints Based on an Anisotropic Multi-Scale Approach	Multi-Scale Modeling of Fatigue Crack Initiation in Polycrystalline Titanium Alloys	Compatible Meshfree Discretization for Dense Electrophoretic Suspension Flows	A Conservative Streamline Method Suitable for Complex Reservoir Flow Simulations	Numerical Simulations of the Richtmyer-Meshkov Instability of the Inverse Chevron Interface
Abhijit Dasgupta*, Qian Jiang	Deniz Ozturk *, Shravan Kotha, Somnath Ghosh	Nathaniel Trask*, Pavel Bochev, Mauro Perego	Luiz Sampaio*, Margot Gerritsen, Anthony Kovscek, Marco Thiele	Tao Wang*
Room: 516E	MS 813	Multiscale Computational Homogenization for Bridging Scales in the Mechanics and Physics of Complex Materials Chair(s): Kenjiro Terada		
An Integrated Level Set Methodology for the Generation and Discretization of Complex Heterogeneous RVEs	Geometrically Nonlinear Simulation of Carbon Nanotubes using a Neural Network-Based Surrogate Modelling Technique	Sparse and Scalable Eigenstrain-Based Reduced Order Homogenization Models for Polycrystal Plasticity	An Image-Based Finite Element Model for Ni-Based Superalloys using a Two Scale Constitutive Model Accounting for Morphological Distributions of Gamma Precipitates	Spatial-Temporal Nonlocal Homogenization Model for Transient Wave Propagation in Viscoelastic Composites
Thierry J. Massart*, Karim Ehab Moustafa Kamel, Bernard Sonon	George Soimiris *, Vissarion Papadopoulos, Dimitrios Giovanis	Xiang Zhang*, Caglar Oskay	George Weber *, Maxwell Pinz, Akbar Bagri, Somnath Ghosh	Ruize Hu*, Caglar Oskay
Room: 522BC	MS 901	Advanced Computational Me Chair(s): Guglielmo Scovazzi	thods for Complex Geometry S	Simulations
A Fixed Cartesian Mesh Method for Large-Scale Parallel Simulation of Complex Vehicular Structures	Reduced Order Modeling of Knitted Textiles Geometry and Deformation	Adaptive Variational Multiscale Method for Turbulent Flows Past Complex Geometries	Advances in Coupled ALE- AMR for Tetrahedral Grids	Modeling Granular Media and Ice Coupled to Multiphase Flow
Koji Nishiguch *, Rahul Bale, Shigenobu Okazawa, Makoto Tsubokura	Dani Liu* , Daniel Christe, Bahareh Shakibajahromi, Chelsea Knittel, David Breen, Genevieve Dion, Antonios Kontsos	Ghalia Guiza *, Mehdi Khalloufi, Philippe Meliga, Youssef Mesri, Elie Hachem	Jacob Waltz* , Jozsef Bakoski	Devin O'Conner*, Chris Kees, Arnold Song, Matthew Farthing

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 522A	MS 902	Advances and Applications of the Generalized/eXtended Finite Element Method Chair(s): Julia Plews		
Applications of a Multi-Scale Generalized Finite Element Method to Three-Dimensional Anisotropic Heterogeneous Materials	GFEM Computations in Heterogeneous Solids using Optimal Local Bases			
Patrick O'Hara*, Piyush Gupta, Deniz Ozturk, Haoyang Li	Paul Sinz*, Robert Lipton, Michael Stuebner			
Room: 524B	MS 903	Advances in Numerical Methods for Linear and Non-Linear Dynamics and Wave Propagation Chair(s): Alexander Idesman		
Keynote Presentation:	Reciprocal Mass Matrices in Explicit Dynamics Inertia Scaling and Customization	Adaptive Wavelet Algorithm for Solving Coupled Systems of Nonlinear Partial Differential Equations with Error Control	On the Solution of Free Surface Problems by Lagrangian and Semi- Lagrangian Galerkin Methods	An Efficient Method for Transient Heat Conduction in Periodic Structures
Manfred Bischoff*, Anne-Kathrin Schäuble, Anton Tka	chuk	Cale Harnish *, Karel Matous, Daniel Livescu	Marta Benítez *, Alfredo Bermúdez, Pedro Fontán	Qiang Gao *, Haichao Cui, Ying Feng
Room: 524A	MS 910	Isogeometric Methods Chair(s): Yuri Bazilevs		
Error Estimates for Adaptive Isogeometric Analysis of Stokes Problem	Adaptive Isogeometric Analysis of Thin Plate Problems using Recovery- Based Error Estimation	A Galerkin Isogeometric Method for Karhunen-Loeve Approximation of Random Fields	A Two-Node Beam Element using an Isogeometric Approach	
Trond Kvamsdal *, Abdullah Abdullhaque, Mukesh Kumar, Arne Morten Kvarving	Knut Morten Okstad *, Trond Kvamsdal, Mukesh Kumar, Kjell Magne Mathisen, Terje Haukaas	Sharif Rahman*	Buntara Sthenly Gan*	

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM	
Room: 519A	MS 912	Meshfree and Particle Methods: New Developments and Applications Chair(s): Zhen Chen			
Keynote Presentation:	Application of a Time Discontinuous Material Point Method to Transient Problems	Recent Advances in Improving the Spatial and Temporal Discretization Schemes of the Material Point Method for Better Simulating Transient Responses	Numerical Simulation of Grain-Scale Mechanics in the Dynamic Compaction of Granular Materials	The Material Point Method in Offshore Geotechnical Engineering	
Yonggang Zheng*, Mengkai Lu, Jiayong Zhang, Hongwu Zhang, Zhen Chen		Zhen Chen *, Yong Gan, Yonggang Zheng	Michael Homel*	Markus Bürg *, Andriy Andreykiv, Liang Jin Lim	
Room: 514A	MS 1005	Symposium on Trends in Unstructured Mesh Generation Chair(s): Mark Shephard			
Tetmesh Scaling for Solution Verification	Node Creation for Isotropic Refinement of Tetrahedral Meshes	Use of the Fruchterman- Reingold Graph Embedding Algorithm to Untangle Hybrid Meshes	PUMA (Polyhedra Unstructured Mesh Adaption): A Novel Method to Refine and Coarsen Convex Polyhedra		
William Quadros*, Brian Carnes	Nick Wyman*, Steve Karman	Suzanne Shontz *, Jake Quinn, Sanjukta Bhowmick	Thomas Gessner *, Sandeep Menon		
Room: 525B	MS 1108	Uncertainty Propagation and Quantification in Multiscale Simulation of Materials Response, Structural Performance, and Failure Chair(s): James Warner			
Estimation of the Remaining Useful Life, using a Microstructure-Based Life Prediction Model and Probabilistic Prognostics	Multiscale Methods for Uncertainty Propagation for Polycrystalline Aluminum 6061-T6	Efficient Uncertainty Propagation for Crack Nucleation in Polycrystalline Aluminum 6061-T6			
Jacob Hochhalter *, Saikumar Yeratapally, Patrick Leser	Peter Coffin*, John Emery, Brian Robbins, Jay Carroll	John Emery *, Peter Coffin, Brian Robbins, Jay Carroll			

TS3: MONDAY EVENING

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM	
Room: 516A	MS 001	Reliable Automated Simulation Technologies: A Symposium Celebrating the 65th Birthday of Professor Mark S. Shephard Chair(s): Saikat Dey			
Boundary Layer Mesh Generation	Hex-Dominant Meshing	Robust and Efficient Validation of the Linear Hexahedral Element	How Many Ways are there to Subdivide a Hexahedron in Tetrahedra?		
Romain Aubry*	Jean-François Remacle*, Jeanne Pelerin, Amaury Johnen, Jonathan Lambrechts	Amaury Johnen *, Jean-François Remacle, Jean-Christophe Weill, Thomas Toulorge, Christophe Geuzaine	Jeanne Pellerin*, Jean-François Remacle, Amaury Johnen		
Room: 514C	MS 101	Advances in Computational Biomechanics Chair(s): Corey P. Neu and David M. Pierce			
Cross-Linked Actin Networks: Micro- and Macroscopic Effects	Modeling Force-Driven Damage in the Axon from Molecular Mechanisms	Form of Seashells Modeled as Evolving Fronts Driven by Accretive Growth	Computational Systems Mechanobiology for Dermal Wound Healing	The Cell Differentiation Model for Dental Implants	
Sandra Klinge *, Serhat Aygn, Robert P. Gilbert, Gerhard A. Holzapfel	Rijk de Rooij*, Ellen Kuhl	Krishna Garikipati *, Shiva Rudraraju, Derek Moulton, Alain Goriely	Adrian Buganza Tepole*	Ming Jun Li*, Nien-Ti Tsou	
Room: 515A	MS 103	Computational Biomechanics of Impact and Injury Chair(s): Matthew Panzer			
Finite Element Based Pelvic Injury Metric Creation and Validation in Lateral Impact for a Human Body Model	An Inverse Finite Element Approach to Obtain Strain Rate Dependent Material Properties of the Human Intervertebral Disc	Comparing Adult Ribcage Geometries between Populations in the United States and China	Failed Rib Regions in a Computational Human Model vs. Observed PMHS Fractures: A Comparative Study		
Caitlin Weaver *, Alexander Baker, Matthew Davis, Anna Miller, Joel Stitzel	Grigoris Grigoradis *, Nicolas Newell, Alexandros Christou, Diagarajen Carpanen, J. Paige Little, Spyros Masouros	Jingwen Hu *, Peiyu Li, Jinhuan Zhang, Matthew Reed	Berkan Guleyupoglu *, Ryan Barnard, Scott Gayzik		

TS3: MONDAY EVENING

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM	
Room: 514B	MS 108	Multiscale Modeling in Bio-mechanical Systems Chair(s): Xianqiao Wang			
Limitations of Multi-Scale and Multi-Physics Modeling	A Coarse-Grained Brownian Molecular Dynamics Model of von Willebrand Factor Multiscale Response to Flow	Abnormal Vascular Dynamics of Nanoworms within Blood Flow	Biomechanical Models for Early Embryonic Brain Morphogenesis		
Sheldon Wang*	Michael Morabito *, Wei Wei, Chuqiao Dong, Alparslan Oztekin, Edmund Webb III, Xuanhong Cheng, Xiaohui Zhang	Ying Li *, Huilin Ye	Zi Chen *, Hannah Grover, Wei Zheng, Shicheng Huang, Lina Zang, Yan Li, Nan Hu		
Room: 520A	MS 201	Advances in High-Order Methods for Computational Fluid Dynamics Chair(s): Peter Vincent			
A Class of Mixed Finite Element Methods for the Compressible Navier-Stokes Equations	High-Order Incompressible Computational Fluid Dynamics on GPUs and Co- Processors	Optimal Runge-Kutta Schemes for Pseudo Time- Stepping with High-Order Methods	Higher Order Space-Time Hybridizable Discontinuous Galerkin Methods for Incompressible Flows on Sliding Meshes	A Direct Flux Reconstruction Formulation for Advection- Diffusion Problems on Simplex Elements	
David Williams*	Niki Loppi*, Freddie Witherden, Antony Jameson, Peter Vincent	Brian Vermeire *, Niki Loppi, Peter Vincent	Tamas Horvath *, Sander Rhebergen	Joshua Romero*, Freddie Witherden, Antony Jameson	
Room: 520B	MS 203	Computational Methods for Hydraulics Chair(s): Azzeddine Soulaïmani			
Accurate Wall-Adapting Local Eddy Viscosity Simulation of a Low-Reynolds Straight- Blade Vertical Axis Wind Turbine	Experimental and Numerical Investigation of the Turbulent Flow over D-Shaped Bluff Body	A New Godunov-Type Scheme for the Two- Dimensional Lagrangian Hydrodynamics			
Matin Komeili* , Marius Paraschivoiu	Alla Eddine Benchikh Lehocine*, Jay Lacey, Sébastien Poncet	Théo Corot*, Bertrand Mercier			

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 520C	MS 301	Advancements in Hydraulic Fracture Simulation Chair(s): Anthony Peirce		
Hydraulic Fracture Simulation	Combined Segregated-Fully Coupled Hydro-Mechanical Cracking of Concrete using XFEM in 3D	Microseismic Wave Simulation using GFEM Enriched Phantom Node Method	Effect of Loading Rate and In- Situ Stress Anisotropy on Fracture Patterns in a Tight Formation	
Robert Gracie *, Egor Dontsov, Denis Esipov, Anthony Peirce, Armando Duarte, Erfan Sarvaramini, Sergey Cherny	Simon-Nicolas Roth*, Azzeddine Soulaïmani, Pierre Léger	Mohammad Komijani *, Robert Gracie	Reza Abedi *, Omid Omidi, Philip Clarke, Robert Haber	
Room: 520E	MS 303	Computational Geomechanics Chair(s): Craig Foster		
Numerical Assessment of Jointed/Faulted Caprock Integrity During CO2 Sequestration Pania Newell *, Mario Martinez	Dynamic Rupture Simulation of a Tunnel Subjected to Fault Displacements using Parallel 3D-FEM Yuta Mitsuhashi *, Gaku Hashimoto, Hiroshi Okuda, Fujio	Domain Decomposition for Numerical Integration of Green's Functions for Layered, Transversely Isotropic Soil Media Josue Labaki*	Cement Sheath Failure and Interface Debonding Driven by Temperature and Pore Pressure Effects in a Cased and Cemented Wellbore Dmitry Kuznetsov *, Sergey Golovin, Nicolas Flamant,	
	Uchiyama		Alexander Valov, Tatiana Rotanova	
Room: 518C	MS 304	Computational Methods and Chair(s): Qian Wang	Design for Impact and Blast Pr	oblems
Crash Analysis and Evaluation of Vehicular Impacts on W-Beam Guardrails Placed behind Curbs using Finite Element Simulations	Pyramid and Degenerate Elements for Lumped Mass Explicit Methods in Nonlinear Solid Dynamics	A Reliability Analysis Method for Assessment of Concrete Barriers under Vehicle Crashes	A Cell-Centered Method for Solving 2D-Axisymmetric Updated Lagrangian Hyper- Elastoplasticity Equations	Computational Analysis of the Process of Metal Material Free-Surface Instability, Fragmentation, and Ejecta under Shock
Matthew Gutowski *, Emre Palta, Howie Fang	Kent Danielson*, Mark Adley	Qian Wang *, Hongbing Fang, Hanfeng Yin	Rémi Chauvin *, Isabelle Bertron, Patrick Le Tallec, Pierre- Henri Maire	Jingsong Bai*

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 521BC	MS 405	Peridynamic Modeling and Simulations Chair(s): Michael Parks		
Matching Boundary Conditions for State-Based and Bond-Based Peridynamics	A Multi-Time-Step Method for Partitioned Time Integration of Peridynamics	Effect of Discretization and Stochastic Material Distribution on Crack Initiation in Peridynamics	Wave Characteristics of 1D and 2D State-Based Peridynamics in Comparisons with Nonlocal General Gradient Theory	
Clint Nicely*, Dong Qian	Michael Parks*, Payton Lindsay,	Martin Rädel*, Christian Willberg, Jochen Schmidt	Senthilkumar Vaiyapuri*	
Room: 518B	MS 406	Recent Advances in Computa Chair(s): Toshio Nagashima	ational Fracture Mechanics and	l Failure Analysis
Energy Methods and Harvesting in Damage Detection of Structures with Ultrasonic Waves	A 3D Numerical Limit Analysis Approach for Strength Predictions of Cross-Laminated Timber Plates	Energy Release Rate Approximation for Surface Cracks using Topological Derivatives	Evaluation of J- and Interaction Integrals for Fracture Problems of Welded Joints	
Philippe Destuynder*	Mingjing Li *, Josef Füssl, Markus Lukacevic, Josef Eberhardsteiner	Kazem Alidoost *, Meng Feng, Philippe H. Geubelle, Daniel A. Tortorelli	Hiroshi Okada *, Masahiro Ono, Koichiro Arai, Yasunori Yusa	
Room: 520D	MS 501	Computational Fluid-Structur Chair(s): TBD	e Interaction: Methods and Ap	plications
Splitting Schemes for the Stress Formulation of the Incompressible Navier-Stokes Equations	Aerodynamic Mitigation of Tall Buildings using Local and Global Shape Optimization	A Numerical Tornado Model Unifying the Existing Experimental Tornado Simulators	Numerical Modeling of Tornado-Like Vortex and its Interaction with Low-Rise Building	
Peter Minev *, Petr Vabishchevich	Ahmed Elshaer *, Girma Bitsuamlak	Anant Gairola *, Zoheb Nasir, Girma Bitsuamlak	Zoheb Nasir*	

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 524C	MS 601	Advances in Computational Methods for Inverse Problems Chair(s): Cedric Bellis		
A Distributed-Memory Newton-Krylov Solver for Inverse Transport Problems	Multiscale Optimization using Generalized Mortar Methods	Adaptive Mesh Refinement and Domain Decomposition in Elasticity Imaging	Nondestructive Measurement of Thermal Diffusivity of Bodies of Arbitrary Shape	Development of Origin- Destination Matrix Estimation Method for Microscopic Traffic Simulator as Quadratic Programming
Andreas Mang*, Amir Gholami, George Biros	Daniel Seidl *, Bart van Bloemen Waanders, Tim Wildey	Li Dong *, Nicholas Hugenberg, Dhruv Patel, Tom Seidl, Paul Barbone, Assad Oberai	Ryszard Bialecki *, Wojciech Adamczyk, Tadeusz Kruczek, Ziemowit Ostrowski	Kazuki Abe *, Hideki Fujii, Shinobu Yoshimura
Room: 519B	MS 605	New Trends in Topology Optimization Chair(s): Glaucio H. Paulino		
Keynote Presentation:	Topology Optimization of Origami Structures with Multi- Stability	Uncertainty Aware Topology Optimization via a Stochastic Reduced-Order Model Approach	Multidisciplinary Topology Optimization using Hierarchical Distributed Computing	Sequential Convex Methods for Large-Scale Topology Optimization
Philip Buskohl*		Miguel Aguilo*, James Warner	David Weinberg*, Nam-Ho Kim	Graeme Kennedy*
Room: 523A	MS 701	Advanced Computational Me Various Length Scales Chair(s): Jeong-Hoon Song	hods and Theories for Predict	ing Material Behaviors at
Strain Field Approximation and Crack Tracking using the Particle Difference Approximation	Deformation of Polycrystals at Multiple Scales: Linking 3D- XRD to CPFE Modelling	An Anisotropic Distribution Dislocation Loop Model for Simulation of Nanoindentation of Single Crystals	Modeling Ni/Al High Energy Ball Milled Composites using the Sharp Volumetric Billboard Method	Multiscale Modeling of Dislocation Kinetics in BCC Iron
Andrew Beel*, Athanasios Iliopoulos, John Michopoulos, Jeong-Hoon Song	Hamidreza Abdolvand*, Jonathan Wright, Angus Wilkinson	Y. P. Chen*	Dewen Yushu *, Sangmin Lee, Karel Matous	Akiyuki Takahashi *, Kazuki Takahashi

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM	
Room: 518A	MS 708	Modeling and Simulation of A Chair(s): Neil Hodge	Modeling and Simulation of Additive Manufacturing Processes Chair(s): Neil Hodge		
Experience and Challenges with Part-Scale Modeling of Select Laser Melting Additive Manufacturing	Direct Energy Deposition Simulation using Truchas	A Workflow for Thermal- Mechanical Modeling of Additive Manufacturing			
Robert Ferencz *, Neil Hodge, Rishi Ganeriwala, Ryan Vignes	Ondrej Certik *, Neil Carlson, Terry Haut	Michael Veilleux *, Michael Stender, Lauren Beghini, Joshua Sugar, Samuel Subia			
Room: 523B	MS 709	Modeling Materials with Coup Chair(s): Stephan Rudykh	bled Physics		
Numerical Modeling of High- Temperature Superconductors using the Discontinuous Galerkin Method	Multiphysics Life Prediction Damage Model of a Turbine Engine Blade Disk Attachment				
Yann-Meing Law-Kam Cio*, Steven Dufour	Samir Naboulsi*				
Room: 516D	MS 802	Advances in Atomistic-to-Co Chair(s): David Chen	ntinuum Coupling Techniques		
Coupled Continuum-Atomistic Simulations of Incommensurate to Commensurate Transformations in Twisted Graphene Bilayers	Out-of-Plane Deformation Behavior of 3D Graphene Honeycomb Structures: Atomistic Simulations and Continuum Modeling				
Ellad Tadmor*, Kuan Zhang	Fanchao Meng*, Jun Song				

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 515C	MS 804	Complex Multi-Physics Coupling Techniques: Advances and Applications Chair(s): Scott Roberts and Tyler Voskuilen		
Simulating Interfacial Multi- Physics Problems using a Meshfree Approach	Locally Conservative Essentially Non-Oscillatory Solution Transfer for Multiphysics Coupling	Multiphysics Design Optimization using an Adjoint Sensitivity Approach	Modeling and Simulation of Residual Stress Development in a Resistance Forge Weld	
Lindsay Erickson*, Jeremy Templeton, Karla Morris	Xuebin Wang *, Xiangmin Jiao, Qiao Chen	Stuart Walker*	Kevin Manktelow*	
Room: 516E	MS 813	Multiscale Computational Homogenization for Bridging Scales in the Mechanics and Physics of Complex Materials Chair(s): Maenghyo Cho		
Dynamic Mechanical Characterization of Random 3D Structural Polymeric Foams	Characterization and Prediction of Random Short- Fiber Reinforced Composite Properties	Homogenization Based on Realization-Dependent Hashin-Shtrikman Functionals of Piecewise Polynomial Trial Polarization Fields	Computational Homogenization Accounting for Size Effect via Interface Elasticity at the Micro-Scale	
Axinte Ionita*, Brittany Branch, Brian M. Patterson, Brad E. Clements, Dana M. Datellbaum, Alexander H. Mueller	Mason Hickman*, Prodyot Basu	Nicolas Venkovic *, Lori Graham-Brady	Saba Saeb *, Paul Steinmann, Ali Javili	
Room: 522A	MS 902	Advances and Applications o Chair(s): Patrick O'Hara	f the Generalized/eXtended Fir	ite Element Method
A Scale-Bridging Generalized Finite Element Method for Parallel Simulations of Spot Welds in Large Structures	A Multi-Scale Coupled Fluid- Thermal-Structural Interaction Analysis Framework using the Generalized Finite Element Method	Toward a Hierarchically Task- Parallel, Multiscale Generalized Finite Element Method		
Armando Duarte*, Haoyang Li	Piyush Gupta *, Haoyang Li, Armando Duarte, Abhijit Gogulapati, Jack McNamara, Patrick O'Hara, Brian Gockel	Julia Plews*		

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 524B	MS 903	Advances in Numerical Methods for Linear and Non-Linear Dynamics and Wave Propagation Chair(s): Alexander Idesman		
Reduced-Order Models and Optimization of Elastomer Damping Devices	Nonlinear and Random Vibrations of a Tensioned Cable Net	Attenuation of Acoustic Waves and Mechanical Vibrations at Low Frequencies by a Nonlinear Dynamical Absorber	Dynamic Finite Element Analysis of Underwater Pipeline under Regular and Irregular Waves	Nonlinear Dynamic Analysis of Space Tethered Solar Power Station
Antoine Legay *, Jean-François Deü, Benjamin Morin, Sylvain Burri	Reyolando Brasil *, Márcia Helena Yamamoto Sato	Deborah Lavazec *, Gwendal Cumunel, Denis Duhamel, Christian Soize	Hyun-Seok Kim *, Byoung Wan Kim, Bo-Woo Nam, Kangsu Lee	Zhiqin Cai *, Xuefu Li, Jinying Wu
Room: 524A	MS 910	lsogeometric Methods Chair(s): Trond Kvamsdal		
U-Splines: Splines over Unstructured Meshes	U-Splines: Application as a Basis for Isogeometric Analysis	Adaptive Refinement of Hierarchical T-Splines		
Derek Thomas *, Kevin Tew, Michael Scott	Michael Scott *, Derek Thomas, Kevin Tew, Michael Borden, Zhihui Zou	Lin Chen*, René de Borst		
Room: 519A	MS 912	Meshfree and Particle Method Chair(s): Michael Hillman	ds: New Developments and Ap	plications
Keynote Presentation:	A Nesting Sub-Domain Gradient Smoothing Integration Scheme for Meshfree Methods	Non-Conforming Naturally Stabilized Nodal Integration	Recent Advances in Numerical Integration in Meshfree Galerkin Methods	Numerical Analysis of Fracture Evolution using Nonlocal Models
Dongdong Wang* , Junchao Wu		Michael Hillman*, J.S. Chen	Alejandro Ortiz-Bernardin*	Prashant Jha*, Robert Lipton

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 514A	MS 1005	Symposium on Trends in Unstructured Mesh Generation Chair(s): Steven Owen		
A Frame-Guided Quadrilateral Mesh Generation Algorithm for CAD Models	Geometric Meshing of Discrete Surfaces	Quadrilateral Mesh Adaptation using Approximate Convex Scaffolding	Unstructured All-Quadrilateral Mesh Generation on Complicated 3D Surface	Distributed Mesh Infrastructure for Particle-in- Cell Simulations
Franck Ledoux*, Katherine Lewis, Walt Nissen	Patrick Laug *, Houman Borouchaki	Chaman Singh Verma *, Krishnan Suresh	James Baeder*, Zihao Zhu	Mark Shephard *, Eisung Yoon, Kaushik Kalyanaraman, Seegyoung Seol
Room: 525B	MS 1108	Uncertainty Propagation and Quantification in Multiscale Simulation of Materials Response, Structural Performance, and Failure Chair(s): Joseph Bishop		
Bayesian Methods to Capture Inherent Material Variability in Additively Manufactured Samples	Nondeterministic Parameter Calibration for Crystal Plasticity Models	Verification and Validation of Thermo-Mechanical Shock Modeling of High Energy Ball Milled Materials with Uncertainty Quantification	A Novel Fast Model Predictive Control Method for Large-Scale Stochastic Dynamic Systems	
Jeremy Templeton*, Francesco Rizzi, Brad Boyce, Reese Jones, Jakob Ostien	Geoffrey Bomarito *, Timothy Ruggles, Saikumar Yeratapally, Patrick Leser, James Warner, Jacob Hochhalter	Sangmin Lee*, Waad Subber, Alberto Salvadori, Karel Matous	Haijun Peng *, Sheng Zhang, Zhigang Wu	

Tuesday Plenary Speaker

9:00-9:45 am

Andrew Stuart California Institute of Technology

Derivative-Free Methods for Inverse Problems Room: 517BC

Abstract: Many problems in the sciences and engineering require the determination of an unknown field (the parameter) from a finite set of indirect measurements. Examples include carbon sequestration, hydrology, oceanography and weather forecasting. At the heart of most formulations is a least squares functional measuring the model output mismatch with the data. To avoid over-fitting, minimization of this mismatch needs to be regularized. I will describe a set of algorithms which address this issue in contexts where the derivative of the parameter to output map is not readily available. In particular I will demonstrate that ideas from the Ensemble Kalman Filter (EnKF) can be adapted to solve such problems: by running multiple interacting copies of the model, and exposing their output to the data, a derivative-free minimization tool is constructed. The EnKF is essentially an optimzation method, despite the original motivation based on Kaman filtering. I will also discuss fully Bayesian inversion, again using derivative-free algorithms, in which a gradient is induced through a Metropolis accept-reject mechanism. Examples including the study of model inadequacy in RANS models of turbulence, and parameter estimation in the human glucose-insulin system, will be used to illustrate the ideas.

Bio: Andrew Stuart is interested in how the current era of data acquisition interacts with centuries of human intellectual development of mathematical models that describe the world around us. As an applied mathematician in the Division of Engineering and Applied Science (EAS), he generates the mathematical and algorithmic frameworks that allow researchers to interface data with mathematical models. His work is informed by—and has applications for—diverse arenas such as weather prediction, carbon sequestration, personalized medicine, and crowd forecasting. Originally from London, Stuart earned his bachelor's degree at Bristol University and then a combined master's/PhD at Oxford University. He worked as a postdoc at MIT in the late '80s, as a lecturer at the University of Bath in England from 1989 to 1992, and then as professor at Stanford University and the University of Warwick in England. He relocated to Southern California this summer.

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 516A	MS 001	Reliable Automated Simulation Technologies: A Symposium Celebrating the 65th Birthday of Professor Mark S. Shephard Chair(s): Assad Oberai		
Keynote Presentation:	Isogeometric Analysis: Past, Present, Future	Mesh Quality of Mixed- Element Bernstein-Bézier Meshes	Goal-Oriented Mesh Adaptation Enabled by the Variational Multiscale Method	Goal-Oriented Error Estimation and Adaptivity with the DPG Methodology
Thomas J.R. Hughes*		Luke Engvall*, John Evans	Assad Oberai*, Brian Granzow	Brendan Keith *, Ali Vaziri Astaneh, Socratis Petrides, Leszek Demkowicz
Room: 514C	MS 102	Computational Bioengineering and Biomedicine Chair(s): Suvranu De		
A Computational Framework for Tissue-Scale, Patient- Specific Prediction of Prostate Cancer Growth	A Heterogeneous Tissue Model for Treatment Planning in Laser-Induced Thermal Therapy	Finite Element Modeling Approach for Protein Dynamics	A Fully Coupled Space-Time Multiscale Modeling Framework for Predicting Tumor Growth	Quantifying the Volumetric Growth in an In Vivo Murine Glioma using a Linear Mechanically-Coupled Model
Guillermo Lorenzo *, Michael Scott, Kevin Tew, Thomas J.R. Hughes, Hector Gomez	Drew Mitchell* , Christopher MacLellan, Samuel Fahrenholtz, John Hazle, Jason Stafford, David Fuentes	Giseok Yun *, Jaehoon Kim, Jae- Young Lee, Do-Nyun Kim	Yusheng Feng *, Mohammad Rahman, Tom Yankeelov, J. Tinsley Oden	Xinzeng Feng *, David Hormuth, Thomas Yankeelov
Room: 515A	MS 103	Computational Biomechanics Chair(s): Jingwen Hu	s of Impact and Injury	
Keynote Presentation:	Comparison of Human Brain Finite Element Models to Whole Brain Sonomicrometry Data	Understanding the Effect of Head Shape on Traumatic Brain Injury Prediction due to Blast Loading	Cavitation Bubble Effects on Cell Disruption via Shockwave Modeling	
Matthew B. Panzer*, Ahmed Alshareef, Sebastian Giudi	ce, Jason Forman	Siddiq Qidwai *, Kirubel Teferra, X. Gary Tan, Athanasios Illiopoulos, John Michopoulos	Matthew Becton *, Xianqiao Wang	

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 514B	MS 108	Multiscale Modeling in Bio-mechanical Systems Chair(s): Zi Chen		
The Effect of Residual Stress on Stress-Modulated Growth in an Artery	Modeling Interfacial Behavior of Responsive Polyelectrolyte-Grafted Nanoparticles			
Lucy Zhang*, Jie Cheng	Xin Yong*, Shiyi Qin			
Room: 520A	MS 201	Advances in High-Order Methods for Computational Fluid Dynamics Chair(s): Antony Jameson		
Keynote Presentation:	A Practical Approach to Curving Meshes for Realistic Geometries	High-Order Mesh Generation and Flow Simulation about Complex Geometries	A Necessary High-Order Meshing Constraint When using the Finite Element Method on Domains with Curved Boundaries	
Steve Karman*		Chris Cantwell *, David Moxey, Mike Turner, Joaquim Peiro, Ayad Kassim, Spencer Sherwin	Philip Zwanenburg *, Siva Nadarajah	
Room: 520B	MS 203	Computational Methods for H Chair(s): Azzeddine Soulaïma		
The Earth by TELEMAC	Capabilities of Shallow Water Equations to Reproduce Real Tsunamis, Cases of Tohoku 2011 and Gisborne 1947	Principal Interval Decomposition Framework for POD Reduced-Order Modeling of Shallow Water Flows	Stochastic Uncertainties Analysis in Dam Break Flow Modeling using a Reduced Order Model	Uncertainty Quantification on a Real Case with TELEMAC- 2D
Sébastien E. Bourban *, Michael S. Turnbull, Alan J. Cooper	Riadh Ata *, Marine Le Gal, Damien Violeau	Jean-Marie Zokagoa *, Azzeddine Soulaïmani	Azzedine Abdedou *, Azzeddine Soulaïmani, Jean-Marie Zokagoa	Cédric Goeury*

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 520C	MS 301	Advancements in Hydraulic Fracture Simulation Chair(s): Denis Esipov		
Keynote Presentation:	A C ^u Non-Local Model of Hydraulic Fracturing	Coupling Fracture Propagation and Reservoir Simulator	Non-Local Formulation for Transport and Damage in Porous Media	Accurate Phase-Field Solution of Sneddons Problem: Main Ingredients and Challenges
Erfan Sarvaramini* , Robert Gracie, Maurice Dusseault		Mary Wheeler *, Benjamin Ganis, Mohamad Jammoul, Sanghyun Lee	Mostafa Mobasher* , Luc Berger-Vergiat, Haim Waisman	Tymofiy Gerasimov *, Laura De Lorenzis
Room: 520E	MS 303	Computational Geomechanics Chair(s): Guenther Meschke		
Inf-sup Stable Computational Methods for Strongly Coupled Porous Media	Hybrid Data-Driven Multiscale Computational Geomechanics across Length Scales	A Discrete-Continuum Coupling Model for Fractured Porous Media with Embedded Branched-Discontinuities in the Finite Deformation Range	Adaptive Arlequin Method for Multiscale Brittle Fracture with Subgrid Length Scales	A Combined Phase Field and Crystal Plasticity Approach for Capturing Thermo- Mechanical Behavior of Polycrystalline Rock Salt
Christian Linder*, Andreas Krischok, Berkin Dortdivanlioglu	WaiChing Sun*, Kun Wang	Kun Wang*, WaiChing Sun	Eric Bryant*, WaiChing Sun	SeonHong Na*, WaiChing Sun
Room: 518C	MS 304	Computational Methods and Chair(s): Navid Allahverdi	Design for Impact and Blast Pr	oblems
Keynote Presentation:	Multi-Physics Coupled Computational Framework for Lithium-Ion Batteries under Mechanical Abusive Loading	Experimental Observation of Multiscale Deformation in Heterogeneous Materials Subjected to Impact Loading	Through Thickness Reinforcement for Z-Pinned Composites	Low Order Modeling for Structural Response of Columns under Extreme Loadings
Jun Xu *, Binghe Liu		Addis Kidane*, Suraj Ravindran	Mark Pankow*	Navid Allahverdi *, Ala Saadeghvaziri

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 518B	MS 401	Computational Fracture Mechanics Chair(s): N. Sukumar		
Keynote Presentation:	The Thick Level Set Model for Fracture: A Theory Allowing the Coupling of Cohesive and Diffuse Approaches to Fracture	A Non-Differentiable Energy Formulation with Nitsche Flux for Time-Continuous Cohesive Fracture	Cohesive Polygonal Finite Elements for Modeling Pervasive Fracture	Modeling of Interfacial Damage in FFT Solvers
Nicolas Moës*, Benoît Le, Gregory Legrain		M. Reza Hirmand *, Katerina D. Papoulia	Eric B. Chin *, N. Sukumar, Joe Bishop, Rao Garimella	Luv Sharma *, Ron Peerlings, Pratheek Shanthraj, Franz Roters, Marc Geers
Room: 521BC	MS 404	Multiscale and Computational Methods in Failure Mechanics Chair(s): Caglar Oskay		
Keynote Presentation:	Stability Analysis of Metals Capturing Brittle and Ductile Fracture through a Phase Field Method and Shear Band Localization	Three-Dimensional Computational Framework with Embedded Weak Discontinuities for Shear Localization under Dynamic Loading Conditions	Two-Scale Computational Modeling of Dynamic Failure in Brittle Solids: Branching Instabilities	An Agile Computational Approach to Crystal Plasticity
Haim Waisman* , Miguel Arriaga		Tao Jin *, Hashem Mourad, Curt Bronkhorst	Cristian Dascalu*	David Littlewood *, Coleman Alleman, Guy Bergel, James Foulk, Alejandro Mota, Hojun Lim
Room: 520D	MS 501	Computational Fluid-Structur Chair(s): TBD	e Interaction: Methods and Ap	plications
Keynote Presentation:	A Flexible FSI Framework with Applications	Coupled CFD/CSD Simulations of Dust Production by Fragmenting Charges using Stabilized Linear Tetrahedral Elements	Analysis of Free-Surface Flow Interacting with an Elastic Beam using Mesh-free Particle Method and Finite Element Method	Large Scale Coupled Analysis of Gas-Liquid-Solid Interaction using ALE Mesh and Level Sets
Yuri Bazilevs*		Orlando Soto *, Joseph Baum, Rainald Löhner, Robert Frank	Naoto Mitsume *, Tomonori Yamada, Shinobu Yoshimura	Tatsuhiro Shono *, Gaku Hashimoto, Hiroshi Okuda

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 520F	MS 506	Free and Moving Boundary Problems: Methods and Applications Chair(s): TBD		
Keynote Presentation:	On the Solution of 3D Free Surface Flows using Enriched Pressure Shape Functions	A Volume-Conserving Level Set Method on Unstructured Meshes using a Control Volume Finite Element Formulation	Turbulent Boiling Multiphase Flows using Variational Multiscale FEM	Shock Wave-Free Interface Interaction
Florin Ilinca *, Bruno Blais, Kintak Raymond Yu		Stephen Lin *, Jinhui Yan, Gregory Wagner	Mehdi Khalloufi *, Youssef Mesri, Rudy Valette, Elisabeth Massoni, Elie Hachem	Roman Frolov *, Peter Minev, Rouslan Krechetnikov
Room: 524C	MS 601	Advances in Computational Methods for Inverse Problems Chair(s): Wilkins Aquino		
From Full-Field Measurements to Material Properties of Composite Materials	Gradient-Based Optimization Algorithms for the Modified Error in Constitutive Equation Approach to Inverse Problems	Early Detection of Breast Cancer through an Inverse Problem Approach to Stiffness Mapping: Preliminary Results from Tissue Phantom Experiments	Inverse Method for Determination of Hardening Parameters of Ductile Materials by a Hardness Test: Numerical and Experimental Aspects	An Unified Inverse Framework for Identification and Model Updating of Mechanical Structures Involving Non-Linear Behaviors
Cédric Bellis *, Manel Trabelsi, Flavien Fremy	Olalekan Babaniyi *, Clay Sanders, Wilkins Aquino	Lorraine Olson *, Robert Throne, Adam Nolte, Kaelyn Griffin, Nicolae Iovanac, Xiaoyin Ling, Tressa Lauer, Michael Samp, Brendan Smyth, Jiaojiao Wang	Lucas Q. Machado *, Lucival Malcher	Basile Marchand*, Ludovic Chamoin, Christian Rey
Room: 519B	MS 605	New Trends in Topology Optimization Chair(s): Miguel Aguilo		
Keynote Presentation:	New Methods for Grid-shell Form-Finding	Topology Optimization of Viscoelastic Damping Layers for Transient Vibration Reduction of Shell Structures	Layout Optimization of Magnetorheological Fluid Patches in Plate Structures by using Semi-Active Control	Structural Dynamic Analysis of an Optimized Flapping Wing Micro Air Vehicle
Tomas Zegard *, Yang Jiang, William Baker, Glaucio	Paulino	Kyeong-Soo Yun *, Sung-Kie Youn	Xiaopeng Zhang *, Akihiro Takezawa, Zhan Kang	Van Tien Truong* , Quoc Viet Nguyen, Marco Debiasi, Heow Pueh Lee

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 518A	MS 707	Modeling and Simulation in Additive Manufacturing Chair(s): Albert To		
Solidification Analysis of Ni Based Superalloy Melted by Electron Beam for Additive Manufacturing	Molten Pool Behavior and Solidification Microstructure of Co-Cr-Mo Alloy in Powder- Bed Electron Beam Additive Manufacturing	Quantitative Prediction of Epitaxial Columnar Grain Texture from Process Parameters in Metal Additive Manufacturing	Large Scale Simulations of Solidification Microstructures in Long and Short Freezing Alloys under Additive Manufacturing Conditions	
Yuichiro Koizumi *, Yushi Ohno, Zhao Yufan, Akihiko Chiba	Yufan Zhao *, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, Daixiu Wei, Akihiko Chiba	Albert To *, Jian Liu, Erica Stevens, Markus Chmielus	Bala Radhakrishnan *, Sarma Gorti, Jean-Luc Fattebert, Tahany El-Wardany, Ranadip Acharya, Alexander Staroselsky	
Room: 525A	MS 710	Modeling of Soft Materials Chair(s): Stephan Rudykh		
Multiphysics Modeling the Urea-Induced Responsive Behavior of the Urea- Sensitive Hydrogel	A Thermodynamically Consistent Large Deformation Constitutive Model for Thermal Curing of Polymers	Anomalous Diffusion and its Applications	Designing Morphology Evolution Pathways in Organic Thin Films	An Anisotropic Lagrangian Plasticity Model for Semi- Crystalline Polymers at Finite Strains
Kek Boon Goh *, Hua Li, Khin yong Lam	Shawn Chester*, Trisha Sain	Weihua Deng*, Eli Barkai	Olga Wodo *, Prosenjit Bhattacharya	Martin Kroon*
Room: 516D	MS 802	Advances in Atomistic-to-Co Chair(s): Jaime Marian	ntinuum Coupling Techniques	
Keynote Presentation:	Large-Scale Real-Space Electronic Structure Calculations	Simulations of Fracture of Amorphous Solids by Multiscale Cohesive Zone Model	Coupled Atomistics and Discrete Dislocations in 3d (CADD-3d)	Nonlocal Heat Conduction Models in Nano-Scale Materials: First Principle Derivations and Local Approximations
Vikram Gavini *, Phani Motamarri		Shingo Urata *, Shaofan Li	Guillaume Anciaux *, Jaehyun Cho, Till Junge, Jean-François Molinari, William Curtin	Xiantao Li*

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 515C	MS 804	Complex Multi-Physics Coupling Techniques: Advances and Applications Chair(s): Jonathan Clausen and Victor Brunini		
Keynote Presentation:	Use of the Conformal Decomposition Finite Element Method for Coupled Electrochemical-Mechanical Simulations of Lithium-Ion Battery Electrodes	Modeling of the Effects of Microstructure Variations in Li-ion Intercalation Batteries during Impact	Coupled Electrochemistry and Solid Mechanics of Li-ion Battery Electrodes	Multi-Physics Coupling Challenges and Approaches for Modeling Thermally Activated Batteries
Scott Roberts* , Hector Mendoza, Bradley Trembac David Noble	ki, Mark Ferraro, Victor Brunini,	Srikanth Allu *, Srdjan Simunovic, Sergiy Kalnaus, Hsin Wang, John Turner	Victor Brunini*, David Noble, Brad Trembacki, Mark Ferraro, Scott Roberts	Tyler Voskuilen *, John Hewson, Harry Moffat, Scott Roberts
Room: 515B	MS 807	Coupled Multiphysics Problems: Discretization Approaches and Solution Methods Chair(s): Michael Gee		and Solution Methods
Coupling Bio-Physical Tumor Models With Diffeomorphic Image Registration	Selective Frequency Damping Algorithm for Steady Flow Convergence Acceleration	Reduced-Order Finite Element Formulation for Vibroacoustic Analysis of Double-Wall Sandwich Panels with Viscoelastic and Piezoelectric Damping Treatments	Nonlinear Dynamics and Pull- in of Microplate-Based MEMS	
Klaudius Scheufele *, Amir Gholaminejad, Andreas Mang, Miriam Mehl, George Biros	Frédéric Plante *, Eric Laurendeau	Walid Larbi *, Jean-François Deü, Roger Ohayon	Mergen Ghayesh *, Hamed Farokhi	
Room: 516E	MS 813	Multiscale Computational Homogenization for Bridging Scales in the Mechanics and Physics of Complex Materials Chair(s): Dennis Kochmann		les in the Mechanics and
Keynote Presentation:	Thermo-Mechanical Coupled Numerical Material Testing for Polymeric Composite Materials	Computational Homogenization of the Nonlinear Electrical Behavior of Graphene/Polymer Nanocomposites	Multiscale Computational Homogenization Approach of Polymer Nanocomposites Including the Clustered Nanoparticles	Countering the Curse of Dimensionality in Data-Driven Design of Materials and Structures
Kenjiro Terada *, Seishiro Matsubara, Masayasu Kis	hi, Mayu Muramatsu	Xiaoxin Lu *, Julien Yvonnet, Fabrice Detrez, Jinbo Bai	Maenghyo Cho *, Hyunseong Shin, Kyungmin Baek, Jin-Gyu Han	Miguel A. Bessa *, Wing Kam Liu, Sergio Pellegrino

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM	
Room: 522BC	MS 901		Advanced Computational Methods For Complex Geometry Simulations Chair(s): Guglielmo Scovazzi and Xianyi Zeng		
Keynote Presentation:	The Shifted Boundary Method for Embedded Boundary Computations	An Adaptive Residual-Based Approach for Solving the Penalized Navier-Stokes Equations in Fluid Structure Interaction	Combining ALE Flow Computations and Embedded Boundary Methods for Multi- Physics Problems	A Cut Cell Finite Element Method for Poisson's Equation on Irregular Planar Domains	
Alex Main* , Guglielmo Scovazzi, Nabil Atallah, Ting Song, Kangan Li		Léo Nouveau *, Héloïse Beaugendre, Cécile Dobrzynski, Mario Ricchiuto	Xianyi Zeng *, Kangan Li, Guglielmo Scovazzi	Sushrut Pande*, Panayiotis Papadopoulos	
Room: 524A	MS 911	Isogeometric Methods for Complex Geometries and Multi-Physics Systems Chair(s): John Evans			
Keynote Presentation:	Ventricular, Vascular and Valvular Fluid-Structure Interaction	Integrating CAD with Abaqus: A Practical Isogeometric Analysis Software Platform for Industrial Applications	The Development of Numerical Method for Ship and Wave Interaction Analysis using NURBS		
Ming-Chen Hsu*		Jessica Zhang*	Keng-Wei Chang *, Pai-Chen Guan		
Room: 519A	MS 912	Meshfree and Particle Method Chair(s): Sheng-Wei Chi	ds: New Developments and Ap	plications	
High Order Gradient Reproducing Kernel Collocation Method for High Order PDEs	Weighted Reproducing Kernel Collocation Method for Solving Inverse Problems	A Radial Basis Function Method on Problems of Blow- Ups in Nonlinear Parabolic Equations	A Phase-Aware Meshfree Framework for Dynamic Behavior of Materials under Extreme Thermomechanical Conditions		
Sheng-Wei Chi *, Ashkan Mahdavi	Judy Yang *, Pai-Chen Guan, Chia-Ming Fan	Guangming Yao*	Bo Li*, Hao Wang, Zongyue Fan		

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 522A	MS 913	Non-standard Formulations and Discretization Methods for Thin-walled Structures Chair(s): Manfred Bischoff		
Keynote Presentation:	Simple Finite Elements for Geometrically-Exact Bernoulli-Euler Beams and Kirchhoff-Love Shells	Geometrically Exact Finite Element Formulations for Slender Beams: Kirchhoff- Love Theory vs. Simo- Reissner Theory	New Numerical Methods for the Efficient Coupling of Nonlinear Beams and Continua	
Paulo Pimenta *, Sascha Maassen, Nils Viebahn, Jö	rg Schröder	Christoph Meier *, Wolfgang A. Wall, Alexander Popp	Ignacio Romero*	
Room: 523B	MS 916	Saddle Point and Mixed Discretization of Variational Problems Chair(s): Constantin Bacuta		ns
On the DPG Method and Non-Standard Boundary Conditions	A New Multigrid Method for Saddle Point Problems	Weak Galerkin Method and its Applications	Efficient High-Order Time- Stepping Methods for 3D Incompressible Flows	Primal-Dual Weak Galerkin Finite Element Methods for PDEs
Norbert Heuer *, Thomas Führer, Michael Karkulik, Ernst P. Stephan	Hengguang Li*	Xiu Ye*, Lin Mu, Junping Wang	Kak Choon Loy *, Yves Bourgault	Junping Wang*, Chunmei Wang
Room: 514A	MS 1101	Advances in Adaptive Approa Problems Chair(s): Jim Stewart	aches for Large-scale Determin	istic and Stochastic
Keynote Presentation:	A Bi-Fidelity, Low-Rank Approximation Technique for Uncertainty Quantification	Density Estimation for a Class of Elliptic Problems on Stochastically Perturbed Domains	An Adaptive Sampling Method Based on Grassmann Manifold Variations	New High-Order Methods using Gaussian Processes for CFD
Alireza Doostan* , Hillary Fairbanks, Jerrad Hampton,	Akil Narayan	Jehanzeb Chaudhry *, Donald Estep, Nathanial Burch	Michael Shields *, Dimitris Giovanis	Dongwook Lee*

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 525B	MS 1107	Stochastic Methods in Computational Mechanics of Random Materials Chair(s): Lori Graham-Brady and Michael Shields		
Bayesian Deep Gaussian Processes for Nonlinear Stochastic Dimensionality Reduction	Variational Multiscale Error Estimators for the Uncertainty Quantification of Mesh Discretization Errors	A Domain Decomposition Based Hybrid Framework for High Dimensional Stochastic Mechanics Problems	Construction and Identification of Stochastic Constitutive Laws for Soft Biological Tissues	Multiscale Optimization of Carbon-Nanotube Reinforced Polymer Structures
Steven Atkinson *, Nicholas Zabaras	Oriol Colomés *, Guglielmo Scovazzi	Srikara Pranesh *, Debraj Ghosh	Johann Guilleminot *, Brian Staber	Vissarion Papadopoulos *, Maria Tavlaki, Odysseas Kokkinos, Manolis Papadrakakis

Tuesday Semi-Plenary Speakers 1:30-2:15 pm

Beth Wingate University of Exeter

Challenges for Climate and Weather Prediction in the Era of Exascale Computer Architectures: Oscillatory Stiffness, Time-parallelism, and the Role of Long-Time Dynamics

Room: 516BC

Abstract: For weather or climate models to achieve exascale performance on next-generation heterogeneous computer architectures they will be required to exploit on the order of hundredmillion-way parallelism. This degree of parallelism far exceeds anything possible in today's complex models even though they are highly optimized. In this talk I will discuss one of the mathematical issues that leads to the limitations in space- and time-parallelism for climate and weather prediction models - oscillatory stiffness in the PDE that leads to time scale separation. I will discuss the case when the time scale separation is infinite, including a fast-converging HMMtype parareal method and a time-parallel matrix exponential. In addition I will present new convergence results for the case when the time scale separation is finite.

Bio: Professor Beth Wingate's main research interest is the study of oscillations in fluid mechanics, mathematics, and numerics for high performance computing. Her recent research is focused on physics of the Arctic Ocean, direct numerical simulations, and time-stepping methods for HPC and climate modeling, and the fluid mechanics of the slow/fast manifolds. She did her PhD work at the University of Michigan studying numerics, waves and ocean fluid dynamics. Other interests include spectral element methods, in particular the investigation of near optimal interpolation on triangles. She spent many years at the Los Alamos National Laboratory in New Mexico, USA before moving to the University of Exeter in Devon, UK in 2013.

Ronald E. Miller Carleton University

Finite Temperature and Finite Deformation: New Tools for More Efficient and Accurate Atomistic Simulation

Room: 517D

Abstract: Two of the important challenges to using atomistic simulation to study material behaviour are modeling the roles of finite temperature and finite deformation. In this presentation I will discuss a new method for finding activation energies for atomistic systems and an improved method for accurately controlling the true stress in molecular dynamics. When studying the deformation of solids at finite temperature, we are regularly confronted with the long time scales associated with activated processes. Diffusion, defect nucleation and dislocation motion are all processes that are often too slow to study with direct atomistic simulations. Instead, we must appeal to models based on transition state theory, whereby we can predict process rates using accurately calculated parameters from key atomic configurations. Specifically, we require knowledge of three atomic configurations: two local minima on the potential energy surface (PES) of the atoms (the "reactant" and "product" states), and the saddle point ("transition" state) configuration between these minima. For complex processes involving many atoms, the challenge is to find these configurations both efficiently and with sufficient accuracy.

In this presentation, I will discuss a new method called TRREAT (the "Transition Rapidly-exploring Random Eigenvector Assisted Tree" method) that we have developed for the purpose of searching the PES for transition and product states. The method is related to methods in the literature (e.g. the nudged elastic band, dimer and activation-relaxation methods) but seems to have advantages for certain applications. Specifically, it can find numerous transition and

product states from knowledge of only the reactant state and does so efficiently by a combination of Monte Carlo search, eigenvector biasing and a method to avoid previously searched regions of the PES. Further, because it works well with only approximate eigenvectors (due to its stochastic nature), it can be applied to large DFT calculations where accurate eigenvectors are prohibitively expensive to compute.

The second challenge I will address, that of finite deformation, is important when studying soft materials or stress-induced phase transformations of crystals. When the stress state needs to be controlled in atomistic simulation of such systems, this is almost universally achieved using the Parrinello-Rahman algorithm or some related technique. However, none of these techniques are able to control the true (Cauchy) stress applied to the system. Instead, they apply an **approximation** to the second Piola-Kirchhoff stress (related to the "engineering" stress). The true Cauchy stress that results during such a simulation is dependent on the deformation of the simulation cell. Further, this true stress cannot be known **a priori**, and it can be significantly different than the apparent applied stress when the deformation is large.

In this presentation, I will discuss an alternative molecular dynamics algorithm that controls the true Cauchy stress applied to the system. The "Cauchystat" is based on the constant stress ensemble presented by Tadmor and Miller ("*Modeling Materials: Continuum, Atomistic and Multiscale Techniques*," Cambridge University Press, 2011), but with modified equations of motion that update the system boundary conditions in response to the resulting deformation of the simulation cell.

Bio: Ron Miller received his BSc in Mechanical Engineering from the University of Manitoba in 1994, and his PhD in engineering from Brown University in 1997. He was a post-doctoral fellow in the Division of Engineering and Applied Sciences at Harvard University. He is co-author of over 70 scientific articles and two textbooks published by Cambridge University Press. He has been a visiting research professor at EPFL (Lausanne, Switzerland), INPG (Grenoble, France), the Technion (Israel) and Brown University (USA). He is currently Professor and Chair of the Dept. of Mech. and Aero. Engineering at Carleton University.

His research focuses on modeling and simulation of materials at the atomic scale. He has been actively involved in the development of a number of multiscale methods that aim to reduce the computational expense of atomic-

scale simulation, and more recently has turned his attention to the development of interatomic potentials and new techniques for exploring energy landscapes to find activation barriers.

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 516A	MS 001	Reliable Automated Simulation Technologies: A Symposium Celebrating the 65th Birthday of Professor Mark S. Shephard Chair(s): Assad Oberai		
Keynote Presentation:	Analyst-Guided Adaptive Simulation at Extreme Scale—Beyond In Situ	Tools for Scalable, Parallel Simulation of Problems with Evolving Domains	Adjoint-Based Sensitivity Analysis and Design of Large- Scale Multidisciplinary Aerospace Applications	The Impact of Automated, Unstructured Meshing on the Use of CFD in Industry
Kenneth Jansen*, Cameron Smith, Benjamin Matthev	vs, Mark Shephard	Saurabh Tendulkar *, Ottmar Klaas, Rocco Nastasia, Mark Beall	Eric Nielsen*	David Corson*
Room: 514C	MS 102	Computational Bioengineering and Biomedicine Chair(s): Yusheng Feng		
Multi-Physics Modeling of Thermomechanical Response of Ultrasonically Activated Soft Tissue	Predicting Lung Motion with Autodesk Simulation	Structural-Based Computational Model of Tendon-to-Bone Insertion	Optimal Sensitivity of Nanowire Field-Effect Troponin Sensors	An Optimization Method for Additive-Manufactured Dental Implants
Rahul* , Suvranu De	Jaesung Eom*	Sergey Kuznetsov *, Hsiao-Ying Shadow Huang	Amirreza Khodadadian*, Clemens Heitzinger, Kiarash Hosseini, Reza Kalantarinejad, Marjan Hedayati, Ali Manzour-ol- Ajdad	Nien-Ti Tsou *, Shih-Shun Chien, Chang-Wei Huang
Room: 515A	MS 103	Computational Biomechanics Chair(s): Matthew Panzer	s of Impact and Injury	
Foot and Ankle Injuries in Under-Vehicle Explosions: A Finite Element Study	Non-Linear Boundary Conditions for a More Realistic Prediction of Femoral Fracture during Side- Fall	Two Finite Element Solvers and Mesh Techniques to Evaluate Lower Leg Protections	Visualization of Vascular Injuries in Extremity Trauma	
Grigoris Grigoriadis *, Diagarajen Carpanen, Anthony Bull, Spyros Masouros	Zainab Altai *, Muhammad Qasim, Xinshan Li, Marco Viceconti	Carolyn Hampton *, Michael Kleinberger	Joseph Teran*	

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 514B	MS 106	Imaged-Based Models for Biomedical Applications Chair(s): Michael Sacks		
Image-Based Estimation of Mitral Valve Strains in the Beating Heart	Ultrasound Imaging-Based Identification of Thermal Damage in Burnt Tissue	CAD-Based Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis	Minimum Required Spatial Resolution for Image-Based Simulations of Mitral Valve	
Bruno Rego *, Amir Khalighi, Andrew Drach, Joseph Gorman, Robert Gorman, Michael Sacks	Hanglin Ye *, Rahul, Saurabh Dargar, Suvranu De	Travis Sanders *, Benjamin Urick, Shaolie Hossain, Jessica Zhang, Thomas J.R. Hughes	Andrew Drach *, Amir Khalighi, Michael Sacks	
Room: 520A	MS 201	Advances in High-Order Meth Chair(s): Freddie Witherden	nods for Computational Fluid D	ynamics
Robust, Efficient, and Geometrically Flexible: Entropy-Stable High-Order Summation-By-Parts Discretizations on Simplex Elements	Recent Advances in Methods with the Summation-by-Parts Property	Adjoint-Based Optimization of Time-Dependent Fluid- Structure Systems using a High-Order Discontinuous Galerkin Discretization		
Jason E. Hicken*, Jared Crean, David C. Del Rey Fernández, David W. Zingg, Mark H. Carpenter	David C. Del Rey Fernández* , David W. Zingg, Mark H. Carpenter, Jason E. Hicken, Pieter D. Boom, Jared Crean	Matthew Zahr *, Per-Olof Persson		
Room: 520B	MS 203	Computational Methods for H Chair(s): Riadh Ata	lydraulics	
Keynote Presentation:	Stabilized XFEM and FEM for Free Surface Incompressible Flows	Adaptive Meshing Strategy Based on Topo-Metric Data for the Dam Break Inundation Assessments	Smart Ferro Fluid for Shock Absorber Main Landing Gear	
Azzeddine Soulaïmani* , Mamadou Tour, Adil Fahsi		Mahdi Moslemi *, Azzeddine Soulaïmani, Georges W. Tchamen	Abolghasem Zare Shahneh*	

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 520C	MS 301	Advancements in Hydraulic Fracture Simulation Chair(s): Egor Dontsov		
Keynote Presentation:	Computational Modeling of Fluid-Induced Fracture Propagation: XFEM and Variational Interface Methods	Coupling Strategies for X/G- FEM Simulation of Hydraulic Fracture	An Extended Finite Element Model for Studying Shear Dilation in a Pressurized Medium	Modeling Competing Hydraulic Fracture Propagation using Generalized/Extended Finite Element Method
Gunther Meschke*, Ildar Khisamitov, Dirk Leonhart, Be	Gunther Meschke*, Ildar Khisamitov, Dirk Leonhart, Beckhuis Sven		Endrina Rivas*, Robert Gracie	Dakshina Valiveti* , Fushen Liu, Peter Gordon
Room: 522BC	MS 302	Advances in Computational Methods for Soil Sciences Chair(s): TBD		
Keynote Presentation:	SiGran: A Virtual Laboratory for Geotechnical Applications	Modeling of Packing Processes for Ellipsoidal Particles of Arbitrary Size	A Three-Dimensional DEM- FEM Modeling of Pneumatic Tire-Sand Soil Interaction	Modeling of Flow and Scouring under Pipelines by Reproducing Kernel Particle Method
Varvara Roubtsova*, Mohamed Chekired		Elham Kheradmand Nezhad*, Leince Remson Elysée, Serge Prudhomme, Marc Laforest, Varvara Roubtsova, Mohamed Chekired	Mengyan Zang*, Zumei Zheng	On Lei Annie Kwok *, Pai-Chen Guan, Chien-Ting Sun
Room: 520E	MS 303	Computational Geomechanic Chair(s): Richard Wan	S	
A Plasticity Model for Fiber- Reinforced Geomaterials	Influence of Inter-Particle Properties on the Elastic Moduli of Granular Materials	Elastic-Brittle-Plastic Analysis of Hoek-Brown Rock using Mohr-Coulomb Failure Criterion		
Craig Foster*, Persid Koci	Kianoosh Taghizadeh *, Behzad Soltanbeigi, Alexander Podlozhnyuk, Vanessa Magnanimo, Stefan Luding	Shailendra Sharan*		

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 518C	MS 304	Computational Methods and Design for Impact and Blast Problems Chair(s): Jasbir Arora		
Modeling Blast Loading on Structures from Explosions in an Urban Environment	Optimization of Framed Structures Subjected to Blast Loading	Simulation of Fracture, Fragmentation, and Debris Field Formation in Glass Lites Under Blast Loading using the Applied Element Method		
Sergey Medyanik *, Syed Mohammad, Nickolas Vlahopoulos	Jasbir Arora *, Mustafa Al- Bazoon	Jonathan Moss*, Adam Howe, Matthew Whelan, David Weggel		
Room: 518B	MS 401	Computational Fracture Mech Chair(s): Christian Linder	nanics	
High-Fidelity Simulation of Brittle Fracture Problems with Universal Meshes	The Successive Node Snapping Scheme: A Method to Obtain Conforming Meshes for Propagating Cracks and Line Defects	Mapped Finite Element Methods: Higher-Order Solutions of Problems with Singularities	A Discontinuous Galerkin / Cohesive Zone Model Approach to Simulating Dynamic Fracture in Very Large Shell Structures	The Discontinuity-Enriched Finite Element Method (DE- FEM)
Adrian Lew*	Yongxing Shen *, Yang Wan, Tianju Xue	Maurizio M. Chiaramonte*	Brandon Talamini *, Raul Radovitzky	Alejandro M. Aragón *, Angelo Simone
Room: 521BC	MS 404	Multiscale and Computationa Chair(s): Haim Waisman	I Methods in Failure Mechanics	5
Multiscale Fracture Analysis of Materials with Periodic Microstructure	Multiscale Modeling Technique for Non-Linear Composite Materials	Representative Elementary Volume Modeling of Geopolymer Composites		
Michael Ryvkin*	Michael Macri*, Andrew Littlefield	Amrita Kataruka *, Erman Guleryuz, Seid Koric, Waltraud Kriven, Ange-Therese Akono		

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 520D	MS 501	Computational Fluid-Structure Interaction: Methods and Applications Chair(s): TBD		
Fluid-Structure Interaction of Dacron Aortic Prostheses Conveying Pulsatile Flow	Immersed Boundary Method with Spring Network Model for Predicting Vesicle Dynamics in Fluid Flow	Fluctuating Hydrodynamic Approaches for Fluid- Structure Interactions Subject to Thermal Fluctuations: Applications in Soft Materials and Fluidics	Fluid-Structure Interaction Model of Human Phonation	
Eleonora Tubaldi*, Marco Amabili, Michael P. Padoussis	Junhong Jo *, Do Wan Kim, Tae- Rin Lee	Ben Gross*, Paul Atzberger	Pooya Tavakoli-Saberi *, Luc Mongeau	
Room: 520F	MS 506	Free and Moving Boundary Problems: Methods and Applications Chair(s): TBD		
High-Order Diffuse Domain Methods for Partial Differential Equations with Dirichlet Boundary Conditions in Complex Geometries	A Robust Lagrange- Projection Splitting Scheme for Compressible Multiphase Flows with Viscous and Heat Conduction Effects: Application to the Melting Process	Improvement of Near Wall Velocity Prediction using Mask in a Penalised Vortex- In-Cell Algorithm	Efficient Moving Mesh Methods for Fourth-Order Partial Differential Equations: Modeling Electrostatic Deflections.	
Fei Yu*, John Lowengrub	Simon Peluchon*, Gérard Gallice, Luc Mieussens	François Morency *, Héloïse Beaugendre	Kelsey DiPietro*, Alan Lindsay	
Room: 524C	MS 602	Advances in Topology Optim Chair(s): Julian Norato	ization for Manufacturing	
A Topology Optimization Scheme to Distribute Lattice Infill in Additive Manufacturing	A PDE-Based Overhang Constraint in Topology Optimization for Additive Manufacturing	Computational Design and Additive Manufacturing of Periodic Conformal Metasurfaces by Synthesizing Topology Optimization with Conformal Mapping	Three-Dimensional Overhang-Constrained Topology Optimization for Additive Manufacturing	A Novel Macro/Micro- Structure Optimization Design Method for Additive Manufactured Structures
Alejandro R. Diaz *, Francesco Campagna	Emiel van de Ven *, Matthijs Langelaar, Can Ayas, Robert Maas, Fred van Keulen	Shikui Chen *, Panagiotis Vogiatzis, Ming Ma, Xianfeng David Gu	Terrence Johnson *, Andrew Gaynor	Zhao Libin*

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 519B	MS 605	New Trends in Topology Optimization Chair(s): Tomas Zegard		
Keynote Presentation:	Integrated Topology Optimization of Multi- Component Structures Considering Interface Behaviors	Development of Multi-Scale MPF Topology Optimization to Maximize a Heat Conductivity Assuming a Metallic Crystalline Structure	Topology Optimization of an Axisymmetric Adsorbed Natural Gas Vessel with Phase Change Materials	Lattice Topology Optimization with Design-Dependent Feature Evolution for Heat Conduction Problem
Zhan Kang* , Pai Liu		Junji Kato *, Toshiki Ichibangase, Shun Ogawa, Tomohiro Takaki, Takashi Kyoya	Diego Silva Prado *, Ricardo Cesare Romam Amigo, Emilio Nelli Silva	Lin Cheng*, Albert Chi Fu To
Room: 518A	MS 707	Modeling and Simulation in A Chair(s): Albert To	dditive Manufacturing	
Simulation of Additive Manufacturing and Techniques to Reduce the Computational Time	Phase-Field Modeling of Selective Laser Melting at the Powder Level	Fully Resolved Numerical Simulations of Fused Deposition Modeling	Limited-Memory Finite Element Simulation of Fused Deposition Modeling Process	
Andreas Lundbäck*, Andreas Malmelöv, Johan Lindwall, Lars- Erik Lindgren	Jiqin Li *, Tai-Hsi Fan	Huanxiong Xia *, Jiacai Lu, Sadegh Dabiri, Gretar Tryggvason	Aaditya Chandrasekhar *, Buzz Rankouhi, Krishnan Suresh	
Room: 525A	MS 710	Modeling of Soft Materials Chair(s): Stephan Rudykh		
Molecular Modeling of Cross- Linked Phthalonitrile (PN) Polymers: A Study of the Mechanical and Electromagnetic Properties of Cross-Linked PN Janel Chua*, Qingsong Tu				

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 516D	MS 802	Advances in Atomistic-to-Continuum Coupling Techniques Chair(s): Dennis Kochmann		
Keynote Presentation:	Coarse-Grained Accelerated Molecular Dynamics	An Accelerated Diffusive Molecular Dynamics Method for the Simulation of Nonlinear Mass Transport in Nanomaterials	Free Energy Calculation and Ghost Force Correction for Hot-QC	
Mauricio Ponga*		Kevin Wang *, Xingsheng Sun, Pilar Ariza, Michael Ortiz	Woo Kyun Kim*, Ellad Tadmor	
Room: 515B	MS 807	Coupled Multiphysics Proble Chair(s): Guglielmo Scovazzi	ms: Discretization Approaches	and Solution Methods
A Novel Hybrid Additive/Multiplicative Schwarz Preconditioner for Monolithic Solvers of Surface- Coupled Multiphysics Problems	Radiation Hydrodynamics with High-Order Finite Elements in the BLAST Code	Geometric and Black Box Multigrid on Hybrid Architectures	A Parallel Fictitious Domain Method for Fluid-Structure Interaction Based on Pseudo - L ² - Projections	A Novel Solver for Multi- Component/Phase Compressible Flows with Advanced Discretized Schemes on Unstructured Grids
Michael Gee *, Maximilian Noll, Matthias Mayr	Vladimir Tomov *, Robert Anderson, Thomas Brunner, Veselin Dobrev, Tzanio Kolev, Robert Rieben	Luc Berger-Vergiat*, Raymond Tuminaro	Rolf Krause *, Maria Nestola, Patrick Zulian	Xi Deng *, Bin Xie, Honghui Teng, Feng Xiao
Room: 515C	MS 808	Modeling at the Intersection of Chair(s): Bill Curtin	of First Principles Methods, Me	chanics and Mathematics
Keynote Presentation:	Finite Element Methods for Accurate, Large-Scale Quantum Mechanical Materials Calculations: From Classical to Enriched to Discontinuous	Large-Scale All-Electron Density Functional Theory Calculations using an Enriched Finite Element Basis	Advanced Finite Element Techniques Applied to Kohn- Sham Density-Functional- Theory: h-adaptive Matrix- Free Finite Element Energy Minimization and h-adaptive Partition-of-Unity Approach	DGDFT for Electronic Structure Calculation
John Pask*		Bikash Kanungo *, Vikram Gavini	Denis Davydov *, Paul Steinmann	Chao Yang *, Amartya Banerjee, Wei Hu, Lin Lin, John Pask

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 516E	MS 813	Multiscale Computational Homogenization for Bridging Scales in the Mechanics and Physics of Complex Materials Chair(s): Luigi Gambarotta		
Modeling the Nucleation and Growth of Polymer Spherulites	Fracture of Nano-Particle Reinforced Polymers: Bridging the Scales from Micro to Macro	Lineal-Path Function for Describing Pore Microstructures of Cement Paste and Relations to Mechanical Properties	Sensitivity of Mechanical Properties to the Microstructure of Cement Paste using FOSM Method	
Fabrice Detrez*, Luc Chevalier	Ajay Bangalore Harish *, Peter Wriggers	Tong-Seok Han*, Ji-Su Kim	Jisu Kim*, Tongseok Han	
Room: 524A	MS 911	Isogeometric Methods for Complex Geometries and Multi-Physics Systems Chair(s): Hugo Casquero		
A Critical Comparison of Coupling Schemes for Non- Matching Isogeometric/Finite Element Discretizations	Strong C1 Coupling of Multi- Patch 3D PHT-Splines	Time-Domain Multi-Patch Discontinuous Galerkin Methods	B++ Spline-Based Extended Isogeometric Analysis for Strong and Weak Discontinuities	
John Evans*, Eric Peters	Chiu Ling Chan *, Cosmin Anitescu, Timon Rabczuk	Jesse Chan*, John Evans	Xuefeng Zhu *, Kai Jiang, Ping Hu	
Room: 519A	MS 912	Meshfree and Particle Methods: New Developments and Applications Chair(s): C.T. Wu		
Keynote Presentation:	A Robust Particle Galerkin Method for High-Speed Metal Grinding Simulation	A Conforming Kernel for an Agile Design-to-Simulation Process	Numerical Modeling of Suspension Plasma Spray	Size-Dependent Deformation Behavior of Fluid-Filled Carbon Nanotubes under Electric Field
C.T. Wu*		Jacob Koester*, J.S. Chen	Ghobad Amini*	Hongfei Ye *, Lili Zhou, Junfei Zhao, Yonggang Zheng, Hongwu Zhang, Zhen Chen

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM	
Room: 522A	MS 913	Non-standard Formulations and Discretization Methods for Thin-walled Structures Chair(s): Bastian Oesterle			
Hierarchic Isogeometric Large Rotation Shell Elements Including Linearized Transverse Shear Parametrization	Applying Isogeometric Blended Shells to U-Spline Surfaces	Kirchhoff-Love Shell Finite Elements Based on Shallow Shell Theory	Shell Element to Represent Thickness-Stretch for Elastoplastic Problems	Rotation-Free Triangle and Its Application in Dynamic Drape Simulation	
Ekkehard Ramm *, Bastian Oesterle, Renate Sachse, Manfred Bischoff	Zhihui Zou *, Michael Scott, Derek Thomas, Bastian Oesterle, Manfred Bischoff, Thomas J.R. Hughes	Antti H. Niemi*, Tom Gustafsson	Takeki Yamamoto *, Takahiro Yamada, Kazumi Matsui	Yexin Zhou *, Kam Yim Sze	
Room: 523A	MS 914	Peridynamics and Its Applications Chair(s): Erdogan Madenci			
Analytical and Computational Investigation of Properties of a Linealy Elastic Peridynamic Material	Peridynamic Modelling of Pit- To-Crack Transition	Efficient Interlayer Modeling and Dynamic Fracture Analysis for Multilayered Structures with Peridynamics	GraFEA: A Graph-Based FEA to Study Damage in Brittle Materials		
Adair Aguiar*, Alan Seitenfuss	Erkan Oterkus *, Dennj De Meo, Luigi Russo	Tae Sik Ahn*, Youn Doh Ha	Srinivasa Arun *, Parisa Khodabakshi, Junuthula Reddy		
Room: 523B	MS 916	Saddle Point and Mixed Discretization of Variational Problems Chair(s): Hengguang Li			
Keynote Presentation:	A Posteriori Finite Element Methods for Mixed Eigenvalue Problems	A Mixed FEM for the Quad- Curl Eigenvalue Problem	The Macroelement Analysis for Axisymmetric Stokes Equations	A Saddle Point Least Squares Method for First-Order Systems	
Daniele Boffi*		Jiguang Sun*	Young Ju Lee*, Hengguang Li	Constantin Bacuta *, Klajdi Qirko	

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 514A	MS 1101	Advances in Adaptive Approaches for Large-scale Deterministic and Stochastic Problems Chair(s): Onkar Sahni		istic and Stochastic
Adaptive Stochastic Approximation for Transport Problems with Random Input Data	Asynchronous Space and Time Algorithm for Localized Uncertainty Quantification			
Jason Li*, Eric Cyr, Eric Phipps, Assad Oberai, Onkar Sahni	Waad Subber*, Karel Matous			
Room: 524B MS 1105		Data Driven Paradigms and Uncertainty Quantification in Computational Mechanics Chair(s): Jim Stewart		
Keynote Presentation:	Selection, Calibration, and Validation of Predictive Multiscale Models of Tumor Growth	A Statistical Surrogate Based Bayesian Approach to Uncertainty Quantification in Brain Injury Criteria	Sequential Estimation of Tissue Properties and Boundary Condition Parameters for Large Artery Hemodynamics	A Bayesian Framework for the Estimation of Regional Methane Fluxes
J. Tinsley Oden* , Ernesto Lima, Thomas Horger, Barbara Wohlmuth, Amir Shahmoradi, David Hormuth, Thomas Yankeelov		Sandeep Madireddy *, Kumar Vemaganti	C. Alberto Figueroa*	Cosmin Safta *, Ray Bambha, Hope Michelsen
Room: 525B	MS 1107	Stochastic Methods in Comp Chair(s): Johann Guilleminot	utational Mechanics of Randon and Kirubel Teferra	n Materials
Developing Mesoscale Probabilistic Characterizations of the Elastic and Inelastic Properties of Random Composites using Statistical Volume Elements	Estimating the Convergence of Apparent Properties and Maximum Response in Computational Homogenization	Approximating the Fluctuations in Random Heterogeneous Problems	Quantification and Modelling Geometrical Variability in Composite Fiber Reinforcement Data	Stochastic Upscaling of Elastic and Damage Behavior of Concrete at Mesoscale
Katherine Acton *, Sarah Baxter, Bahador Bahmani, Reza Abedi	Kirubel Teferra *, Lori Graham- Brady	Pierre-Loïk Rothé*, Frédéric Legoll	Dirk Vandepitte *, Andy Vanaerschot, Ilya Straumit, Stepan V. Lomov	Vasav Dubey* , Arash Noshadravan

Wednesday Plenary Speaker

9:00-9:45 am

Mark Ainsworth

Brown University

Multi-Grid at Scale?

Room: 517BC

Abstract: Multigrid and multilevel iterative algorithms are often the method of choice for the solution of large-scale systems of linear equations arising from discretisation of partial differential equations using finite element or finite difference methods. The multigrid method is non-trivial in that it involves a number of components including smoothing relaxation, coarse grid solve, prolongation and restriction operators between grids in the multilevel hierarchy, and the convergence behaviour of the method has been extensively analysed in the context of standard computer architectures. However, comparatively little is known about the resilience or fault-tolerance of the algorithm on next generation hardware architectures which are expected to suffer from frequent data corruption and hardware failures. In this talk, we will present a mathematical model for the occurrence of failures and analyse the resiliency, or otherwise, of the standard multigrid method under the model. Numerical examples are presented to illustrate the theoretical developments. This is joint work with Christian Glusa (Brown University).

Bio: Professor Ainsworth obtained his PhD from the University of Durham, United Kingdom in 1989. He is currently Professor of Applied Mathematics at Brown University, and also holds a Joint Faculty Appointment with the Mathematics and Computer Science Group at Oak Ridge National Laboratory, Tennessee. Ainsworth's original research interests are in the numerical approximation of partial differential equations. He is, together with J.T. Oden, the co-author of a monograph on *A Posteriori Error Estimation in Finite Element Analysis*.

Ainsworth has worked in a range of areas relating to the numerical solution of partial differential equations including a posteriori error estimation and adaptive solution of PDEs using high order finite element methods, multigrid and domain decomposition methods for the solution of large scale linear algebra problems, the analysis of dispersive and dissipative behaviour of numerical methods for wave propagation, hierarchical and multiscale modelling. Ainsworth is currently researching in several new areas:

- resiliency of state of the art numerical algorithms such as the multigrid method on emerging architectures such Exascale machines;
- numerical analysis and modelling using fractional partial differential equations;
- compression of scientific data arising from very large scale simulations on leadership computing facilities;
- the use of techniques from Computer Aided Geometric Design and in particular, Bernstein-Bézier polynomials for the analysis and efficient implementation of high order finite element methods.

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 516A	MS 001	Reliable Automated Simulation Technologies: A Symposium Celebrating the 65th Birthday of Professor Mark S. Shephard Chair(s): Daniel Ibanez		
Keynote Presentation:	Addressing Customer Needs Through Open Processes and Software	Adaptive Simulation of Coastal and Hydraulic Fluid- Structure Interaction in the Proteus Toolkit	On Acoustic Scattering from Elastic Objects in the Free- Field and near a Fluid- Sediment Interface	A Flexible Conservative Remapping Framework for Exascale Computing
William Schroeder*		Chris Kees *, Matthew Farthing, Manuel Quezada de Luna, Alvin Zhang, Tristan de Lataillade, Aggelos Dimakopoulos, Onkar Sahni	Saikat Dey*	Garimella Rao *, Ondrej Certik, Ferenbaugh Charles, Angela Herring, Chris Malone, Chris Sewell
Room: 515A	MS 103	Computational Biomechanics of Impact and Injury Chair(s): Kirubel Teferra		
Computational Simulations of Tertiary Blast Emphasize the Need for Blunt Impact Protection	System-Level Validation of the Warrior Injury Assessment Manikin Finite Element Model	Combat Helmet Design Incorporating Anthropomorphic Fit, Brain Functional Areas and Injury Considerations		
Jean-Philippe Dionne*, Aris Makris, Jeffrey Levine	Nicholas Vavalle *, Matthew Shanaman, Christian Lomicka, Parth Patel	Peter Matic *, Robert Saunders, Xiangguang Gary Tan		
Room: 520A	MS 206	Model Reduction in Computa Chair(s): Kevin Carlberg	tional Fluid Dynamics	
Keynote Presentation:	A Parametric Nonlinear Model Order Reduction Framework for Steady-State Flows Past Parametrically Deformed Complex Geometries	Model Reduction for Transport Problems via Nonlinear State Space Transformation	Deforming Grid Method for Dimensionality Reduction of Convection Dominated Nonlinear Flows	A Reduced-Order Strategy for Transient Problems with High Moving Gradients
Charbel Farhat *, Kyle Washabaugh		Stephan Rave *, Christoph Lehrenfeld, Mario Ohlberger	Maciej Balajewicz*	Sergio Idelsohn *, Alejandro Cosimo, Alberto Cardona

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 520C	MS 301	Advancements in Hydraulic Fracture Simulation Chair(s): Erfan Sarvaramini		
Keynote Presentation:	Hydraulic Fractures Near Tip Behavior: Effects of Fluid Rheology, Turbulence, Stress Variation, and Proppant	Implicit Level Set Algorithms for Modeling Multiscale and Turbulent Effects in Hydraulic Fracture Propagation	Development of a Fracture Tip Plastic Zone in Semi- Consolidated Sedimentary Rock Georeservoirs during Hydraulic Fracture Propagation	Modeling Hydraulic Fracture Height Growth and Proppant Transport in a Formation with Stress Drop
Egor Dontsov*		Anthony Peirce*, Egor Dontsov	Robert Caulk*, Ingrid Tomac	Fengshou Zhang *, Egor Dontsov
Room: 518C	MS 304	Computational Methods and Design for Impact and Blast Problems Chair(s): TBD		
Nonlinear Dynamic Analysis of Shell Structures	Three-Dimensional Numerical Simulation of High Velocity Compaction Based on Discrete Element Method			
Takuya Matsumoto *, Shigenobu Okazawa	Jun Liu *, Xiaolong Luo, Yonggang Wang, Liming Yang, Huanran Wang			
Room: 518B	MS 401	Computational Fracture Mech Chair(s): Adrian Lew	nanics	
Keynote Presentation:	Phase Field Modeling of Hydraulic Fracturing with Interfacial Damage in Highly Heterogeneous Fluid- Saturated Porous Media	An Optimization Based Phase Field Model for Continuous- Discontinuous Fracture	Modeling Progressive Damage and Fracture of Polymers	Computational Modeling of the Formation and Mechanical Instability of Solid Electrolyte Interphase on Silicon Electrodes in Lithium- Ion Batteries
Julien Yvonnet *, Liang Xia, Siavash Ghabezloo		Rudy Geelen *, Yingjie Liu, John Dolbow	Yunwei Mao *, Brandon Talamini, Lallit Anand	Xiaoxuan Zhang *, Christian Linder

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 525A	MS 402	Modeling and Simulation for Complex Material Behavior Chair(s): Patrick Diehl		
Keynote Presentation:	Double Well Potentials and Nonlocal Brittle Fracture Modeling	Numerical Analysis of Nonlocal Fracture Models	Numerical Implementation Aspects of a Constitutive Model for Concrete with a Deviatoric Shape of Yielding Surfaces Based on Bézier Curves	Relaxing the CFL Condition for the Wave Equation on Adaptive Meshes
Robert Lipton*		Prashant Jha*, Robert Lipton	Paula Folino*	Roland Maier *, Daniel Peterseim, Mira Schedensack
Room: 521BC	MS 404	Multiscale and Computational Methods in Failure Mechanics Chair(s): Haim Waisman		3
Keynote Presentation:	A Variational Multiscale Method for Dynamic Viscoelastic Solid Mechanics	Multi-Objective Optimization of Multi-Scale Finite-Element Analysis for Wear Resistant Steel	Material Properties and Morphology Parameters Sensitivity Analysis in Energetic Material	
Guglielmo Scovazzi *, Xianyi Zeng, Nabil Abboud, Oriol Colomés		Peerapon Wechsuwanmanee *, Junhe Lian, Sebastian Münstermann	Xiaoyu Zhang *, Caglar Oskay	
Room: 520B	MS 504	Flow-Induced Vibrations: Solution Techniques and Models Chair(s): Rajeev Kumar Jaiman		
Model-Order Reduction and Control Strategies for Flow- Induced Vibration	A Study on Dynamic Reduction Method for Acoustic Modal Analysis	A Variationally Bounded Scheme for Allen-Cahn Phase Field Equation for Modeling of Two-Phase Flows	Techniques for Linking One- Way Coupled and Fully Coupled Simulations of Flow- Induced Vibration	A Partitioned Iterative Interface Force-Correction Scheme for Fluid-Flexible Multibody Interaction
Rajeev Kumar Jaiman*	Seongmin Chang *, Kang-Heon Lee, Gyu Mahn Lee, Jong-Wook Kim	Vaibhav Joshi *, Rajeev Jaiman	Jerome Solberg*, Kei Mueller	Pardha Gurugubelli *, Ritwik Ghoshal, Anurag Yenduri, Rajeev Kumar Jaiman

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 520D	MS 505	Fluid-Structure Interaction Algorithms and Applications Chair(s): Jonathan Pitt		
A Coupled Overset Mesh and Hybridizable Discontinuous Galerkin Algorithm for Dynamic ALE Formulations	Numerical Investigation of Iterative Coupling for Structural Acoustics	Basic Study on Hydroelastic Slamming Simulations by a Fully-Lagrangian Coupled MPS Method	Conservation Error Analysis of a Family of Embedded Boundary Methods for Multi- Material Problems with Evolving Domains and Discontinuities	Multiple Program Multiple Data FSI Coupling of Structural Dynamics (Sierra/SD) and UNDEX (NEMO)
Justin Kauffman*, Jonathan Pitt	Scott Miller*, Gregory Bunting	Takefumi Higaki* , Abbas Khayyer, Masashi Kashiwagi, Jong-Chun Park	Zhengyu Huang *, Charbel Farhat	Gregory Bunting *, Scott Miller, Jonathan Stergiou
Room: 520F	MS 506	Free and Moving Boundary Problems: Methods and Applications Chair(s): TBD		
Keynote Presentation:	From Mesoscopic to Macroscopic Computations of Dynamic Contact Lines	Experimental Measurement of Contact-Line Mobility using Drop Resonance	A Moving Contact Line Model for Immiscible Multiphase Flow Problems using the Conformal Decomposition Finite Element Method	Role of Viscosity Stratification in Tear Film Rupture
Shahriar Afkhami*		Yi Xia *, Paul Steen	Alec Kucala *, David Noble, Mario Martinez	Mohar Dey *, Atul Vivek, Harish Dixit, Ashutosh Richariya, James Feng
Room: 520E	MS 507	Phase-field Modeling and Simulation in Fluids, Solids and Biomechanics Chair(s): Krishna Garikipati		
Keynote Presentation:	Simulations of Droplet Collision with Cahn-Hilliard Equation on Multi-GPU Cluster	Thermodynamic Consistency and Stable Schemes for Quasi-Incompressible Navier- Stokes-Cahn-Hilliard Models	Phase-Field Modeling of Surfactant-Driven Fracture in Particulate Rafts	Phase-Field Free Energy and Boundary Force for Molecular Solvation
Chao-An Lin* , Tzu-Chun Huang, Chien-Yi Chang		Kris van der Zee *, Gorkem Simsek, Mahnaz Shokrpour Roudbari, E. Harald van Brummelen	Christian Peco *, Yingjie Liu, Carter Rhea, John Dolbow, Wei Chen, Mahesh Bandi, Eliot Fried	Shibin Dai *, Bo Li, Jianfeng Lu

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 524C	MS 602	Advances in Topology Optimization for Manufacturing Chair(s): Xu Guo		
Projection-Based Topology Optimization: Recent Advancements and Connections to Manufacturing	Self-Supporting Structure Design in Additive Manufacturing through Moving Morphable Component/Void (MMC/MMV) Based Explicit Topology Optimization	Topology Optimization of Curved-Plate Structures with Placement Bounds	Explicit Three-Dimensional Topology Optimization via Moving Morphable Component/Void (MMC/MMV) Approach	Topology Optimization under Uncertainty via Non-Intrusive Polynomial Chaos Expansion
Saranthip Koh*, Mikhail Osanov, Josephine Carstensen, James Guest	Xu Guo*, Weisheng Zhang	Julian Norato *, Shanglong Zhang	Weisheng Zhang *, Jishun Chen, Xu Guo	Vahid Keshavarzzadeh *, Daniel Tortorelli
Room: 519B	MS 605	New Trends in Topology Optimization Chair(s): Emilio C.N. Silva		
Keynote Presentation:	Multimaterial Topology Design for Optimal Stiffness and Thermal Conductivity Response	Multi-Material Continuum Topology Optimization: An Elegant Formulation and Update Scheme	Topology-Optimized Design of Architected Materials with Multiple Materials	Simultaneous Optimization of Topology and Pointwise Constitutive Properties through Multi-Variable SIMP
Kai James *, Ziliang Kang		Glaucio Paulino *, Emily Daniels, Miguel Aguilo	Josephine Carstensen*, James Guest	Tej Kumar *, Krishnan Suresh
Room: 518A	MS 707	Modeling and Simulation in Additive Manufacturing Chair(s): Jikai Liu		
Keynote Presentation:	Multi-Physics Modeling of Multiple-Track Defect Mechanisms in EBSM	Fatigue Life Prediction for Critical Microstructures in AM Metals	Data-Driven Process-to- Structure Heuristics for Additively Manufactured Materials	
Wing Kam Liu*		Orion Kafka *, Cheng Yu, Wing Kam Liu	Puikei Cheng*, Wing Kam Liu	

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 516D	MS 802	Advances in Atomistic-to-Continuum Coupling Techniques Chair(s): Ron Miller		
Keynote Presentation:	An Absorbing Boundary Condition to Minimize Wave Reflection in Atomistic Simulations	Dynamic Multiscale Method and Applications	Atomic-Microscale Modeling of Phonons in the Molecular Crystal RDX	Modelling of Nanoscale Phononic Crystals
Vincent Tan *, A.V. Rammohan		Chuin-Shan David Chen*	Peter Chung *, Francis VanGessel	Ralf Meyer*
Room: 516E	MS 803	Advances in the Modelling of Multi-Scale, Multi-Physics and Multi-Uncertainty Problems Chair(s): Francisco Pires		
Multi-Scale Modelling of Structure Evolution in Tungsten under Irradiation and Heat Loads	On the Algorithmic Treatment of a Constitutive Model for Mechanically-Induced Martensitic Phase Transformations	Micro-Mechanical Modeling of the Yield Behavior of Oriented Semi-Crystalline Polyethylene	Dislocation Dynamics at High Strain-Rate Inertial and Thermal Effects	
Hans van Dommelen*, Awital Mannheim, Marc Geers	Daniel de Bortoli *, Francisco Andrade Pires, Eduardo de Souza Neto	Mohsen Mirkhalaf *, Hans van Dommelen, Leon Govaert, Marc Geers	Eleanor Mak*, Robert Gracie	
Room: 515B	MS 805	Computational Modeling of M Chair(s): Jae Hyun Park	lulti-Functional Materials	
A Large Deformation Theory Coupling Photo-Chemical Reaction and Electrochemistry for Light- Responsive Polyelectrolyte Gels	Mimetic Discretization Methods for Solving Electrical Conduction Problems in Laminated Composites with Cracks	A Multiscale Model for the Oxygen Reduction and Oxidation Reactions in LSCF Based Solid Oxide Cell		
Yuhang Hu*	Jose Castillo *, Luis Waldo Escalona Galvis, Johnny Corbino, Satchi Venkataraman	Linjian Ma*, N.R. Aluru,		

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 515C	MS 808	Modeling at the Intersection of First Principles Methods, Mechanics and Mathematics Chair(s): John Pask		
Dislocation Cores from First Principles: Ni and Ni3Al for Superalloys	Large Scale Electronic Structure Studies on the Energetics of Dislocations in Al-Mg Materials System and its Connection to Mesoscale Models	Capturing the Collaborative Strengthening Effects of Work Hardening and Precipitation Hardening with Dislocation Dynamics	Small- and Large- Deformation-Based Peierls- Nabarro and Phase-Field Modeling of the Dislocation Core in fcc Systems and Comparison with Atomistics	
Dallas Trinkle*, Anne Marie Tan	Sambit Das*, Vikram Gavini	Joshua Crone*, Jaroslaw Knap	Jaber Rezaei Mianroodi *, Bob Svendsen	
Room: 522A	MS 905	Cohesive Zone Models - Fundamentals and Multiscale Applications Chair(s): Glaucio Paulino and Kyoungsoo Park		
3D Fracture Simulation of Reinforced Concrete using Damage Model Based on Fracture Mechanics for Concrete	Removing Mesh Bias in a Cohesive Surface Element Approach for Two- and Three-Dimensional Mixed- Mode Fracture Analysis	Direct and Simultaneous Extraction of Vector Traction- Separation Relations for Interfaces	Frictional-Contact Model Coupled with the Traction- Separation Relationship of the Cohesive Zone Model	
Mao Kurumatani*, Yuto Soma	Habeun Choi*, Kyoungsoo Park	Kenneth Liechti *, Chenglin Wu, Rui Huang	Kyoungsoo Park *, Hyunil Baek	
Room: 524A	MS 911	Isogeometric Methods for Co Chair(s): Jessica Zhang	mplex Geometries and Multi-P	hysics Systems
Isogeometric Structural Shape Optimization using Bézier Triangles	Mixed Bernstein-Bézier Discretizations of Trimmed CAD Surfaces for Isogeometric Analysis	Isogeometric Analysis for Nonlinear Bending of Microplates	Mesh Dependency Performance of Nonlinear Solid Analysis using Isogeometric Elements	
Cosmin Anitescu *, Jorge Lopez, Navid Valizadeh, Timon Rabczuk	Wei Wang *, Xiaoxiao Du, Gang Zhao, Howie Fang	Hoang Nguyen*, Thuc Vo	Yuta Yokoyama *, Shigenobu Okazawa	

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 519A	MS 912	Meshfree and Particle Method Chair(s): Bram Metsch	ds: New Developments and Ap	plications
Keynote Presentation:	MESHFREE: General Finite Differences for Fluid Flow and Continuum Mechanics with Three Industrial Applications	Advances in Algebraic Multigrid (AMG) for the Finite Pointset Method (FPM)	Particle-Based Modeling of Clothes Washing and Drying Processes	Accuracy in Meshfree GFDM Schemes for the Incompressible Navier-Stokes Equations
Almut Eisentraeger*, Joerg Kuhnert, Timo Waechtler		Bram Metsch*, Fabian Nick	Masaaki Suzuki *, Hiroshi Okuda	Pratik Suchde *, Joerg Kuhnert, Sudarshan Tiwari
Room: 523A	MS 914	Peridynamics and Its Applications Chair(s): Erkan Oterkus		
Using Peridynamics to Model Biological Materials	Peridynamics for Solving Nonlinear Partial Differential Equations	The Influence of the Ab Initio Conditions in the Numerical Solution of the Peridynamic Equation	Peridynamics for Damage Prediction in Composite Laminates due to Thermo- Oxidation	
Emma Lejeune *, Christian Linder	Erdogan Madenci *, Mehmet Dorduncu	David Miranda*	Selda Oterkus *, Erdogan Madenci	
Room: 522BC	MS 915	Polygonal and Polyhedral Dis Chair(s): N. Sukumar	scretizations in Computational	Mechanics
Keynote Presentation:	The Mimetic Finite Difference Method for Elliptic Problems with Staggered Discretizations of Diffusion Coefficients	A Generalized Mimetic Finite Difference Method and Two- Point Flux Schemes over Voronoi Diagrams	Divergence Free Virtual Elements	On the Mixed Virtual Element Method (VEM) for Finite Deformations
Gianmarco Manzini *, Konstantin Lipnikov, David J. Moul	ton, Mikhail Shashkov	Ivan Yotov *, Omar Al-Hinai, Mary Wheeler	Giuseppe Vacca *, Loureno Beiro da Veiga, Carlo Lovadina	Heng Chi *, Lourenco Beirao da Veiga, Glaucio Paulino

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 523B	MS 916	Saddle Point and Mixed Discretization of Variational Problems Chair(s): Constantin Bacuta		
A Mixed Finite Element Method for the Muscle- Tendon-Aponeurosis Complex	Stability Conditions for Variational Formulations Based on Multi-Field Saddle Point Problems			
Sebastian Dominguez* , Nilima Nigam	Andreas Krischok*, Christian Linder			
Room: 514A	MS 1101	Advances in Adaptive Approaches for Large-scale Deterministic and Stochastic Problems Chair(s): Jim Stewart		
Adaptive Multiscale Modeling using Generalized Mortar Methods	VMS A Posteriori Error Estimation for Stokes Flow	Adaptivity for Active Flow Control on a Vertical Tail Rudder Assembly	Parallel Goal-Oriented Adaptive Inelasticity	Different Flavors of Adaptive Mesh Refinement Use in FLASH
Tim Wildey *, Bart Van Bloemen Waanders, Tom Seidl	Guillermo Hauke*, Diego Irisarri	Kenneth Jansen*, Michel Rasquin, Cameron Smith, Riccardo Balin, Benjamin Matthews	Brian Granzow*, Assad Oberai, Mark Shephard	Anshu Dubey*
Room: 524B	MS 1105	Data Driven Paradigms and U Chair(s): Alberto Figueroa	Incertainty Quantification in Co	omputational Mechanics
Keynote Presentation:	Approximation Algorithms for Big Data	A Paradigm for Predictive Modeling of Computational Mechanics using Field Inversion and Machine Learning	Manifold Sampling for Data- Driven UQ and Optimization	
Dongbin Xiu*		Karthik Duraisamy*	Christian Soize *, Roger Ghanem	

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 514B	MS 1109	Uncertainty Quantification an Chair(s): Daniele Schiavazzi	d Stochastic Modeling in Biolo	ogical Systems
Efficient Parameter Estimation via Multi-Fidelity Bayesian Optimization	A Bayesian Approach to Model Calibration, Selection and Surrogate Modeling: Application to Traumatic Brain Injury	Towards a Multi-Fidelity Hemodynamic Model Pipeline for the Analysis of Cardiovascular Flow Under Uncertainty	Uncertainty Quantification in Multi-Scale Simulations of Coronary Artery Bypass Grafts using Multi-Resolution Expansion	Probabilistic Outcomes Prediction in the ICU: Adding Uncertainty to APACHE
Paris Perdikaris *, George Em Karniadakis	Kumar Vemaganti*, Sandeep Madireddy, Emily Kang	Casey Fleeter *, Daniele Schiavazzi, Alison Marsden	Justin Tran *, Daniele Schiavazzi, Abhay Ramachandra, Andrew Kahn, Alison Marsden	Corey Bryant*

Wednesday Semi-Plenary Speakers

1:30-2:15 pm

Margot Gerritsen

Stanford University

Outstanding Problems in Subsurface Flow Room: 516BC

Abstract: The subsurface provides a mecca for the computational scientist and engineer. In this talk, we will discuss outstanding (unresolved and guite wonderful) problems in simulation of flow and transport, as well as data analysis. Flow and transport of subsurface fluids are governed by nonlinear processes across a wide range of temporal and spatial scales, under strong uncertainty. We will focus on a particularly interesting case that involves combustion. In this thermal process, sensitivities to numerical and modeling errors are very high and the community still puzzles over the most effective simulation approaches. We will dive a bit deeper into the question of how to upscale kinetics from the observable laboratory scale to the reservoir scale. As in many other fields, data mining and machine learning techniques are increasingly applied to gain additional insights and/or develop faster simulation tools. In the second part of the talk, we will look at examples and discuss areas in which the marriage of subsurface flow and data science may be particularly attractive.

Bio: After receiving her MS degree in Applied Mathematics at the University of Delft, Margot moved to the U.S. in search of hillier and sunnier places. In 1996, she received her Ph.D. in Scientific Computing and Computational Mathematics from Stanford University. Before returning to Stanford in 2001, Margot spent five years in Auckland, New Zealand, as a faculty member in the Department of Engineering Science. Margot is a professor in the Department of Energy Resources Engineering at Stanford, interested in computer simulation and mathematical analysis of engineering processes. Since 2010, she directs the Institute for Computational and Mathematical Engineering and is currently a Senior Associate Dean in Stanford's School of Earth, Energy, and Environmental Sciences. She specializes in renewable and fossil energy production, and is also active in coastal ocean dynamics and yacht design.

Eldad Haber University of British Columbia

Deep Learning Meets Differential Equations and Optimal Control

Room: 517D

Abstract: In this talk we will review the latest developments in deep learning. We will show that the problem of deep learning can be viewed as an optimal path planning subject to dynamic PDE constraints. We will discuss numerical methods for the solution as well as suggest new algorithms for the solution of the problem.

Bio: Dr. Haber is a scientific an NSERC Industrial Research Chair at the University of British Columbia. Eldad is working in the field of computational inverse problems with applications to geosciences and medical imaging. Over the last 20 years, Eldad has written various commercial software packages that have been widely adopted by industry. Dr. Haber has written or co-authored over 150 peer reviewed publications on computational problems and is a U.S. Department of Energy Career Award recipient. After completing his Ph.D, he spent several years as a research scientist with Schlumberger and nine years at Emory University in Atlanta at the Department of Mathematics and Computer Science. In 2011, Eldad co-founded Computational Geosciences Inc.

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 514C	MS 105	Direct and Inverse Methods for Cardiovascular and Pulmonary Mechanics Chair(s): Alberto Figueroa		
A Formulation for Cardiopulmonary Circulation Hemodynamics: Bridging Analytical Morphometry- Based Arterial Tree Models and Image-Based 3D Models using Impedance Boundary Conditions	Parameter Estimation and Design of Experiments for Soft Tissues	Numerical Simulations of In- Stent Restenosis	Advanced Higher Order Methods and Modified Inverse Analysis for Improved Photoacoustic Biomedical Image Reconstruction	
Vasilina Filonova*, C. Alberto Figueroa	Ankush Aggarwal*	Jie Cheng*, Lucy Zhang	Wolfgang A. Wall*, Svenja Schoeder, Martin Kronbichler	
Room: 515A	MS 107	Mechanobiology of Cells, Vesicles and Biomembranes Chair(s): Marino Arroyo		
Diffusion of Band-3 Protein and Vesiculation in the Healthy and Defective Red Blood Cell Membrane	Soft Matter Modeling and Simulation of Mechanotransduction of Cells	A Theoretical and Computational Framework for the 3D Fully Non-Linear Dynamics of Lipid Bilayers	Divergence-Conforming and Fully-Implicit Simulation of Cell-Scale Blood Flow	Theoretical and Computational Modeling of Lipid Membranes: Effects of Elastic Bending and In-Plane Viscous Flow
George Lykotrafitis *, He Li, Yihao Zhang, Vi Ha	Shaofan Li*	Alejandro Torres-Sánchez *, Marino Arroyo, Daniel Millán	Hugo Casquero*, Carles Bona- Casas, Hector Gomez, Yongjie Zhang	Amaresh Sahu *, Yannick Omar, Roger Sauer, Kranthi Mandadapu
Room: 520B	MS 204	Computational Methods in Environmental Fluid Mechanics Chair(s): Ethan Kubatko		
Keynote Presentation:	2D and 3D Finite Element Analysis for Tsunami Waves	A Local Discontinuous Galerkin Finite-Element Method for the Richard's Equation	Time and Space Adaptivity in Turbidity Current Simulation	
Kazuo Kashiyama*, Guoming Ling, Junichi Matsumoto		Yilong Xiao*, Ethan Kubatko	Andre Rossa *, Alvaro Coutinho, Jose Camata	

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 520A	MS 206	Model Reduction in Computational Fluid Dynamics Chair(s): Charbel Farhat		
A Spatial Clustering Algorithm for Constructing Local Reduced-Order Bases for Nonlinear Model Reduction	Space-Time Least Squares Petrov-Galerkin Projection in Nonlinear Model Reduction	An Adaptive Discontinuous Galerkin Reduced-Basis Element Method for CFD	Projection-Based Model- Order Reduction for Nonlinear Contact Problems	Model-Order Reduction of Dynamic Skeletal Muscle Models
Tina White *, Phil Avery, Charbel Farhat	Youngsoo Choi *, Kevin Carlberg	Masayuki Yano*	Todd Chapman *, Charbel Farhat	Mylena Mordhorst *, Oliver Röhrle
Room: 520C	MS 301	Advancements in Hydraulic Fracture Simulation Chair(s): Egor Dontsov		
Keynote Presentation:	Numerical Model of Fracture Initiation from Perforated Wellbore	Fully Three-Dimensional Model of Hydraulic Fracture Propagation	Modelling of Mechanical Processes Related to Hydraulic Fracturing	Non-Symmetrical Hydraulic Fracture Propagation due to Poroelastic Effects
Denis Esipov *, Dmitriy Kuranakov, Vasily Lapin, S	ergey Cherny	Vasily Lapin *, Sergey Cherny, Denis Esipov, Dmitriy Kuranakov	Sergey Golovin *, Alexey Baykin, Alexander Valov	Alexey Baykin*, Sergey Golovin
Room: 518B	MS 401	Computational Fracture Mech Chair(s): Christian Linder	nanics	
Keynote Presentation:	Thermally-Driven Oscillatory Cracks and Branching Cracks in Glass: A Peridynamic Analysis	A Concurrent Coupling of Peridynamics and Classical Continuum Mechanics	A Floating Node Method for the Crack Growth Analysis of Brittle Materials	
Florin Bobaru *, Zhanping Xu, Guanfeng Zhang		Alireza Tabarraei *, Xiaonan Wang	Sachin Kumar *, L.H. Poh, B.Y. Chen	

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 525A	MS 402	Modeling and Simulation for Complex Material Behavior Chair(s): Patrick Diehl		
An Iterative Method for Multiscale Composite Structures	Method of Manufactured Solution for Large Deformation Finite Element Analysis of Hyperelasticity			
Michael Stuebner *, Robert Lipton, Paul Sinz	Takahiro Yamada*			
Room: 521BC	MS 404	Multiscale and Computationa Chair(s): Caglar Oskay	I Methods in Failure Mechanics	5
Detailed Finite Element Analysis of E-Defense Shake Table Test of 10-Story Reinforced Concrete Building	Validation of Numerical Simulation Results of E- Defense Large Scale Experiment on Soil- Underground Structure Interaction	Scale Analysis of Damage Evolution in Incipient Spall under Plate Impact		
Takuzo Yamashita *, Tomoshi Miyamura, Makoto Ohsaki	Mahendra Kumar Pal *, Takuzo Yamashita, Shintaro Ohno, Atsushi lizuka	Xiaoyang Pei *, Shi Chen, Hui Peng		
Room: 520D	MS 505	Fluid-Structure Interaction Al Chair(s): Scott Miller	gorithms and Applications	
A Stable Partitioned FSI Algorithm for Rigid Bodies and Incompressible Flow	Aeroacoustic Simulation of Nearly Incompressible Flow Coupled with Deformable Solid	Benchmark Results of a Mesh Moving Technique with Minimum-Height-Based Stiffening	Development and Validation of FSI Analysis System Considering Active Control	Open Source, Tightly Coupled, Partitioned Fluid- Structure Interaction Simulation Capability for High Spatiotemporal Resolution during Study of Wave Impact Loads in High-Speed Watercraft
J.W. Banks *, W.D. Hensahw, D.W. Schwendeman, Q. Tang	Feimi Yu*, Lucy Zhang	Tomonori Yamada *, Giwon Hong, Naoto Mitsume, Shinobu Yoshimura	Shigeki Kaneko *, Giwon Hong, Naoto Mitsume, Tomonori Yamada, Shinobu Yoshimura	Wensi Wu *, Justyna Kosianka, Christopher Earls

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM	
Room: 520F	MS 506	Free and Moving Boundary Problems: Methods and Applications Chair(s): TBD			
hp-Finite Element Modeling of Silicon Solidification	Modeling of Solidification and Thawing Problems with Free Surfaces in Rigid Containers	Computational Models for Molten Corium Flow and Reaction with Concrete	A Thermodynamically Consistent Level Set Approach for Shock-Induced Alpha-Gamma Phase Transition of RDX	A Revised Tangle-Free Algorithm for Two- Dimensional Mesh Motion Problems	
Brian Helenbrook*	Bruno Blais*, Florin Ilinca	Rekha Rao *, Alec Kucala, Jeremy Templeton, David Noble, Yifeng Wang, Denise Bencoe, David Louie	Kartik Josyula *, Rahul, Suvranu De	Justin Droba*, Adam Amar	
Room: 520E	MS 507	Phase-field Modeling and Simulation in Fluids, Solids and Biomechanics Chair(s): Kristoffer Van Der Zee			
On Bounds for the Penalty Constant in Irreversibility Constraint for a Phase-Field Formulation of Brittle Fracture	Modeling Grain Boundary Anisotropy-Driven Microstructural Evolution with Arbitrary Grain Orientation and Plastic Deformation Boundary Driven	Hydraulic Fracturing in Porous Media using a Phase Field Approach	Effective Properties of Cracked Multi-Domain Ferroelastic Materials under Simultaneous Straining and Thermal Cycling		
Laura De Lorenzis *, Tymofiy Gerasimov	Josep Maria Ribot *, Brandon Runnels	Sanghyun Lee *, Baehyun Min, Sogo Shiozawa, Mary Wheeler	Yun-Che Wang *, Meng-Wei Shen		
Room: 518C	MS 508	Stabilized and Multiscale Met Chair(s): John Dolbow and Is			
Variational Interfacial Coupling in Thermo- Mechanical Field Problems at Finite Strains	A Stabilized, Symmetric Nitsche Method for Spatially Localized Plasticity	A Rate-Dependent Interfacial Damage Model for Multiscale Dynamic Fracture	Spectral Hybrid Localized Orthogonal Decomposition Method	The Shifted Boundary Method: A New Approach to Embedded Boundary Computations	
Arif Masud*, Pinlei Chen	Timothy Truster*	Robert Haber*, Reza Abedi	Alexandre Madureira* , Marcus Sarkis	Kangan Li *, Guglielmo Scovazzi, Alex Main, Nabil Atallah, Ting Song	

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM	
Room: 524C	MS 602	Advances in Topology Optimization for Manufacturing Chair(s): Julian Norato			
Optimal Design of Fiber- Reinforced Composite Structures that are Fabricated via Additive Manufacturing	Optimization of Origami Crease Topology through Cellular Division	Multi-Component Topology Optimization: Historical Developments and Continuous Relaxation	Design Optimization of Mechanical Metamaterials for Vibration Control	Design Optimization Method for Additive Manufacturing Primary Mirror of Large- Aperture Space Telescope	
Felipe Fernandez*, James Lewicki, Daniel Tortorelli	Kazuko Fuchi *, Marcelo Kobayashi, Andrew Gillman, Edward Alyanak, Philip Buskohl	Kazuhiro Saitou*, Yuqing Zhou	Timothy Walsh*, Josh Robbins, Chris Hammetter, Wilkins Aquino	Shuitan Liu* , Rui Hu	
Room: 525B	MS 603	Bayesian Statistical Inversion in Engineering Mechanics Chair(s): Abhijit Sarkar			
Large-Scale Deterministic Inversion and Bayesian Calibration in Land-Ice Modeling	A Scalable Sampling-Free Nonlinear State Estimation Algorithm for Large-Scale Models and Data Sets using High Performance Computing	Determination of Explosive Yields using Nonlinear Bayesian Regression	Predictive Modeling of Wavelet Coefficients for Physical Processes		
Irina Tezaur*, John Jakeman, Mauro Perego, Stephen Price	Ajit Desai *, Philippe Bisaillon, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar	John Burkhardt*	Mohammad Khalil *, Jina Lee, Maher Salloum		
Room: 519B	MS 605	New Trends in Topology Opti Chair(s): Junji Kato	mization		
Maximization of Energy Absorption Capacity Applying Elastoplastic Multi-Scale Topology Optimization	Topology Optimization of Elastoplastic Structures under Cyclic Loads	Multi-Material Topology Optimization for Energy Absorption Capacity Assuming Finite Elastoplastic Deformation	Topology Optimization of a Crash Box Considering Time- Dependent Crash and Nonlinear Plastic Behaviors using Equivalent Static Loadings	The Quick Continuum Structural Topology Optimization Based on the Changes of Supporting Conditions	
Shun Ogawa *, Hiroya Hoshiba, Junji Kato, Takashi Kyoya	Lei Li *, Guodong Zhang, Kapil Khandewal	Hiroya Hoshiba *, Junji Kato, Takashi Kyoya	Cheol Kim *, Mohammadmahdi Davoudi	Jianjun He*	

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 518A	MS 707	Modeling and Simulation in Additive Manufacturing Chair(s): Jikai Liu		
B-Spline Based Topology Optimization for Metal Hybrid Additive-Subtractive Manufacturing	Porous Composite with Negative and Positive Thermal Expansion Obtained by Multi-Material Topology Optimization and Additive Manufacturing	Engineered Architected Materials: Multidirectional Functionally Graded Cellular Solids	Adaptive Optimization of the Topology of Lattices	
Jikai Liu *, Albert To	Akihiro Takezawa *, Makoto Kobashi	Hamid Akbarzadeh*, Hamed Niknam Jahromi, Armin Mirabolghasemi, Denis Rodrigue, Daniel Therriault	Antonin Paquette-Rufiange*, Serge Prudhomme, Marc Laforest, Augustin Schmidt	
Room: 516D	MS 802	Advances in Atomistic-to-Continuum Coupling Techniques Chair(s): Ellad Tadmor		
Keynote Presentation:	An Equation-Free Multiscale Method: Extension of the Quasicontinuum Method to Irregular Structures	Extended Variational Quasicontinuum Methodology for Modelling of Crack Propagation in Discrete Lattice Systems	TrussQC: Modeling the Fracture of Coarse-Grained Truss Lattices using the Quasicontinuum Method	Network Model of Re-Entrant and Conventional Cellular Materials
Lars A.A. Beex*, Pierre Kerfriden		Ondrej Rokos *, Ron H.J. Peerlings, Jan Zeman, Lars A.A. Beex	Greg Phlipot *, Dennis Kochmann	lgor Berinskii*
Room: 515B	MS 805	Computational Modeling of M Chair(s): Sang-Bok Lee	lulti-Functional Materials	
Formulation of Governing Equations in Piezoelectric and Piezomagnetic Materials Directly using the Law of Conservation of Energy	Experimental and Computational Analysis of the Ballistic Properties of SiC Tile Encapsulated Composite Armor System	An Investigation into the Effect of Molybdenum on Interfacial Properties of TiC/Steel Composite through Atomistic Simulation	Epsilon-Martensite Start Temperature Modeling using First-Principles Calculation	
Peng Zhou*	lilguk Jo *, Seungchan Cho, Minhyung Lee, Sang-Kwan Lee, Sang-Bok Lee	Seungchan Cho* , Ilguk Jo, Jaekwang Lee, Jae Hyun Park, Sang-Kwan Lee, Sang-Bok Lee	Jae Hoon Jang *, Heon-Young Ha, Tae-Ho Lee, Dong-Woo Suh	

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM	
Room: 515C	MS 808	Modeling at the Intersection of Chair(s): Amit Acharya	Modeling at the Intersection of First Principles Methods, Mechanics and Mathematics Chair(s): Amit Acharya		
Keynote Presentation:	Multiscale Diffusion Method for Simulations of Long-Time Defect Evolution	Prediction from First Principles of the Structure and Composition of Vanadium Carbide Nanoprecipitates in Microalloy Steel	Mechanical Properties of Rhenium Disulfide and Rhenium Diselenide: A First- Principles Study		
William A. Curtin*		Sebastián Echeverri Restrepo*, Davide Di Stefano, Matous Mrovec, Michael W. Finnis, Anthony T. Paxton	Pratyaksh Agrawal ⁺, Chandra veer Singh		
Room: 516E	MS 812	Multiphysics Computation and Coupled Effects Chair(s): Dong Qian			
Keynote Presentation:	Computational Framework Involving Spatial and Temporal Multi-Scaling for Coupled Transient Electromagnetics-Mechanical Phenomena	A Finite Element Based Method for Simulating Surfactants Spreading on Liquid Films	A Multi-Temporal Scale Approach To Thermomechanical Failure And Response Prediction		
Somnath Ghosh *, Shu Guo, Reza Yaghmaie		Yingjie Liu *, Christian Peco, John Dolbow, Guglielmo Scovazzi	Rui Zhang *, Lihua Wen, Jinyou Xiao, Dong Qian		
Room: 523B	MS 904	BIE/BEM and Their Fast Solut Chair(s): Yijun Liu	tion Methods		
Keynote Presentation:	Preconditioners for the Boundary Element Method based on Hierarchical Matrices	Fast Multipole Method for Poroelastodynamics	Adaptive Cross Approximation in BEM for Elastic Continua	Solving Large-Scale Nonlinear Eigenvalue Problems in Boundary Element Method by Resolvent Sampling Based Rayleigh- Ritz Method	
Eric Darve *, Toru Takahashi, Pieter Coulier		Martin Schanz*	Anita Maria Haider* , Martin Schanz	Jinyou Xiao *, Junpeng Wang, Tao Wang, Lihua Wen	

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 524A	MS 908	Finite Element Methods for Wave Propagation Chair(s): Jay Gopalakrishnan		
Recent Progress on DG Methods for Maxwell's Equations in Complex Media	Discontinuous Galerkin Methods for Maxwell's Equations in Nonlinear Polarization Media	Designing Robust Beam Combinable High-Power Fiber Amplifiers	A DPG Approach to the Full Vectorial Transverse Mode Instability Model of Optical Laser Amplifiers	The DPG Method for High Frequency Time-Harmonic Wave Propagation Problems
Jichun Li *, Yunqing Huang, Wei Yang	Vrushali Bokil *, Yingda Cheng, Yan Jiang, Fengyan Li	Jacob Grosek*	Leszek Demkowicz *, Sriram Nagaraj, Jacob Grosek	Socratis Petrides *, Leszek Demkowicz
Room: 519A	MS 912	Meshfree and Particle Method Chair(s): Gary Seidel	ds: New Developments and Ap	plications
Modeling of Electromechanical Composite Interfaces in the Material Point Method using Cohesive Zones	A New Particle-In-Cell Technique for Reducing Noise	Dredging Induced Failure Mechanisms of Subaqueous Slopes: An Investigation with Coupled CFD-DEM		
Stefan Povolny *, Adarsh Chaurasia, Gary Seidel	Craig Schroeder *, Chenfanfu Jiang, Joseph Teran	Manuela Kanitz*, Jürgen Grabe		
Room: 523A	MS 914	Peridynamics and Its Applica Chair(s): Seida Oterkus	tions	
A New Energy-Based Solder Joint Fatigue Life Prediction Approach for Electronic Packages	Coupled Iso-Geometric Analysis (IGA) and Peridynamics Method for Ship Structural Analysis			
Ibrahim Guven*, Forrest Baber	Shih-Mo Kuo*, Pai-Chen Guan			

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 522BC	MS 915	Polygonal and Polyhedral Discretizations in Computational Mechanics Chair(s): Joseph Bishop		
Keynote Presentation:	PowerMesh: A New Robust Polyhedral Meshing Technique for Non-Convex Domains	A Constrained Resampling Strategy for Eliminating Short Edges in Voronoi Meshes	From Digital Images, STL and NURBS to Computational Stress Analysis using Scaled Boundary Polytope Elements	Modeling Strong and Weak Discontinuities without Element-Partitioning in the Extended Finite Element Method
Mohamed Ebeida* , Ahmed Abdelkader, Ahmad Rushdi		Ahmed Mahmoud *, Mohamed Ebeida, Ahmed Abdelkader, Ahmad Rushdi, John Owens	Chongmin Song Song*	N. Sukumar*, Eric B. Chin
Room: 522A	MS 1002	Computational Methods in Image Analysis Chair(s): Joao Manuel R.S. Tavares and Renato Natal Jorge		
Quantifying Microscale Damage through Image- Based Material Testing of Particulate Composites using Micro-Tomography	Establishing the Mechanical Properties of Pelvic Floor Muscle by using MRI and an Inverse Method	Segmentation of Atherosclerotic Plaques in MR Carotid Artery Images	Application of Fourier and Wavelet Methods to an Experimental Tumbling Mill Using 3D Particle Tracking Data	
Katherine Ramos *, Andrew Gillman, Karel Matous	Renato Natal Jorge *, Elisabete Silva, Sofia Brandão, Teresa Mascarenhas, Marco Parente	Joao Tavares *, Danilo Jodas, Aledir Pereira	Daramy Kallon*, Indresan Govender, Aubrey Mainza	
Room: 514A	MS 1003	Enabling Technologies and Simulation Practices for Advanced Scientific and Engineering Computation Chair(s): Alvaro Coutinho		ced Scientific and
Keynote Presentation:	Parallel Numerical Methods for Black-Box Coupling in Surface Coupled Multi- Physics Problems and Beyond	Towards Scalable AMG- Based Preconditioners for MHD and Multifluid Plasma Simulations	Communication-Free Mesh Multiplication using Pairing Function	
Miriam Mehl* , Klaudius Scheufele, Florian Lindne	r, Benjamin Uekermann	Paul Lin *, John Shadid, Edward Phillips, Jonathan Hu, Eric Cyr, Roger Pawlowski	Renato N. Elias *, Jose J. Camata, Alvaro L.G.A. Coutinho	

02:30 PM	02:50 PM	03:10 PM	03:30 PM	03:50 PM
Room: 516A	MS 1102	Advances in Error Analysis and Computational Aspects of Deterministic and Stochastic PDE Eigenvalue Problems Chair(s): Harri Hakula		
A FEAST-Type Algorithm for Operators	Optimal Quotient Iterations for Large Generalized Eigenvalue Problems	Recursive Integral Eigenvalue Solver with Cayley Transformation	Spectral Inverse Iteration for Eigenvalue Problems with Random Coefficients	Computation of Extremal Eigenvalues of High- Dimensional Lattice-Theoretic Tensors in Tensor-Train Format
Jeffrey OvalI *, Jay Gopalakrishnan, Luka Grubisic	Vesa Kotila*, Marko Huhtanen	Ruihao Huang *, Jiguang Sun	Mikael Laaksonen *, Harri Hakula	Vesa Kaarnioja*
Room: 514B	MS 1104	A Posteriori Error Estimation and Adaptivity Chair(s): Serge Prudhomme		
Keynote Presentation:	A Posteriori Error Estimation and Adaptivity for the Virtual Element Method	Error Estimation and Adaption in Domain Decomposition Methods	An Adaptive hp-Refinement Strategy with Computable Guaranteed Error Reduction Factors	Mesh Adaptation Based on a Hierarchical A Posteriori Error Estimator
Andrea Cangiani *, Emmanuil H. Georgoulis, Tristan P	ryer, Oliver J. Sutton	Pierre Gosselet *, Valentine Rey, Christian Rey	Patrik Daniel*, Alexandre Ern, Iain Smears, Martin Vohralk	Thomas Briffard*, André Fortin
Room: 524B	MS 1105	Data Driven Paradigms and U Chair(s): Roger Ghanem	ncertainty Quantification in Co	omputational Mechanics
Data-Driven Probabilistic Boundary Layer Model for Prediction of Airfoil Performance	Data-Interactive Computational Materials Physics: Studies of Precipitate Morphology by a Combination of Experiment, Nonlinear Elasticity and Machine Learning	A Bayesian Analysis of Rheological Models for the Simulation of Turbidity Currents	Uncertainty Quantification in Composite Woven Materials using a Statistically Equivalent Representative Volume Element with Discrete Defects	
Alexandre Marques*, Qiqi Wang, Youssef Marzouk	Gregory Teichert *, Emmanuelle Marquis, Krishna Garikipati	Fernando Rochinha*, Henrique Costa, Zio Souleymane, Gabriel Guerra, Alvaro Coutinho	David Tal*, Jacob Fish	

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 514C	MS 105	Direct and Inverse Methods for Cardiovascular and Pulmonary Mechanics Chair(s): Wolfgang Wall		
Keynote Presentation:	On the In-Vivo Function of the Heart Valve Leaflet: Insights into Tissue-Interstitial Cell Biomechanical Coupling	The Importance of Mechano- Electrical Feedback and Inertia in Cardiac Electromechanics	The Impact of Myocardium Compressibility in Computational Simulations of the Healthy and Infarcted Heart	
Michael Sacks *, Chung-Hao Lee, Will Zhang		Francisco Sahli Costabal*, Felipe A. Concha, Daniel E. Hurtado, Ellen Kuhl	Joao S. Soares *, David S. Li, Eric Lai, Joseph H. Gorman III, Robert C. Gorman, Michael S. Sacks	
Room: 515A	MS 107	Mechanobiology of Cells, Ves Chair(s): Roger Sauer	sicles and Biomembranes	
Keynote Presentation:	Hydrodynamic Coupling Within Curved Lipid Bilayer Membranes: The Role of Curvature in the Drift- Diffusion Dynamics of Proteins	Modeling and Simulation of the Dynamics of Soft Adhesion Mediated by Mobile Binders: 2D Variational Modeling	Computational, Three- Dimensional Investigation of Endocytosis	
Paul Atzberger *, Ben Gross		Dimitri Kaurin*, Marino Arroyo	Yannick A.D. Omar *, Kranthi K. Mandadapu, Roger A. Sauer	
Room: 519A	MS 202	Advances in Meshfree Particl Chair(s): Ahmad Shakibaeinia	e Methods for Fluid Mechanics a and Tewfik Mahdi	3
A Material Point Method for Simulation of Viscoelastic Flows	Modeling Surface Soil Erosion by Water using SPH	Mesh-Free Particle Modeling of Multiphase Granular Continuum		
Peter Gordon *, Fushen Liu, Holger Meier, Rohan Panchadhara, Vikas Srivastava	Elizabeth Hernández Zubeldia*, Georgios Fourtakas, Benedict D. Rogers, Márcio M. Farias	Ahmad Shakibaeinia*		

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 520B	MS 204	Computational Methods in Environmental Fluid Mechanics Chair(s): Ethan Kubatko		
A New Very Large Eddy Simulation of the Flow over a Cylinder at Low Re=3900	A Hybridized Discontinuous Galerkin Method for Fully Nonlinear Irrotational Serre- Green-Naghdi Model	qADMESH+: An Automatic Quadrangular and Mixed- Element Mesh Generator		
Shuangfeng Wang *, Puxian Ding	Ali Samii*, Clint Dawson	Dominik Mattioli *, Ethan Kubatko, Alan Zundel		
Room: 520A	MS 206	Model Reduction in Computa Chair(s): Masayuki Yano	tional Fluid Dynamics	
Keynote Presentation:	Reduced-Order Compensators for Estimation and Feedback Flow Control	Calibrated Filtered Reduced Order Modeling	Statistical Mechanics-Based Closures for Galerkin ROMs	Structure-Preserving Model Reduction for Finite-Volume Discretizations of Conservation Laws
Jeff Borggaard*		Xuping Xie*, Traian Iliescu	Eric Parish*, Karthik Duraisamy	Kevin Carlberg *, Youngsoo Choi, Syuzanna Sargsyan
Room: 520C	MS 301	Advancements in Hydraulic F Chair(s): Robert Gracie	racture Simulation	
High-Performance Computing in the Modeling of Hydraulic Fracturing	A Parallel Implementation of the Enhanced Local Pressure Model for the Large Scale Simulation of Hydraulic Fracturing	A Fully Coupled Method for Massively Parallel Simulation of Hydraulically Driven Fractures in 3-Dimensions		
Denis Bannikov *, Alexey Tikhonov, Vadim Isaev, Ivan Velikanov, Dmitry Kuznetsov	Ernst W. Remij *, Joris J.C. Remmers, Erik Jan Lingen, Jacques M. Hyughe, David M.J. Smeulders	Randolph Settgast*, Chandrasekhar Annavarapu		

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 518B	MS 401	Computational Fracture Mech Chair(s): N. Sukumar	nanics	
Material-Dependent Crack- Tip Enrichment Functions in XFEM for Modeling Bimaterial Interfacial Cracks	Numerical Analysis for Diffusion-Induced Cracks	A Class of Examination of Simulation for Ductile Fracture	An Adaptive Cohesive Zone Model for Fatigue Crack Growth in the Framework of Generalized Plasticity	Calculation of T-Stress for Cracks in Two-Dimensional Anisotropic Elastic Media by Boundary Integral Equation Method
Yongxiang Wang *, Haim Waisman	Sayako Hirobe*, Kenji Oguni	Hirofumi Sugiyama *, Kazumi Matsui, Takahiro Yamada	Noémie Rakotomalala *, Vincent Chiaruttini	Han Tran*
Room: 525A	MS 402	Modeling and Simulation for Chair(s): Patrick Diehl	Complex Material Behavior	
In Situ Intra-Bundle Full Field Measurement in a Single Carbon Fiber Bundle Composite under Transverse Load	Current Efforts in Developing an Optimum Biaxial Tensile Test Specimen Design	Temperature-Dependent Multi Scale Large Deformation Simulation of Cu-Ag Alloy		
Ilyass Tabiai *, Damien Texier, Daniel Therriault, Martin Lévesque	Dilp Banerjee *, Mark ladicola, Adam Creuziger, Evan Rust	Ali Gordan*, Amir Reza Khoei		
Room: 521BC	MS 403	Modeling and Simulation of D Chair(s): Reza Abedi	amage and Fracture in Brittle	and Quasi-Brittle Materials
Modeling Dynamic Shear Rupture at Weak Interfaces: In Quest of High Resolution and Precision	A New Hybrid Numerical Scheme For Simulating Fault Ruptures With Near Fault Bulk Inhomogeneities	Automated Simulation of the Multiscale Damage Response of Materials with Complex Microstructures	A Stochastic Approach for Modeling Dynamic Fracture of Quasi-Brittle Materials	
David Kammer*	Ahmed Elbanna *, Setare Hajaroalsvadi	Soheil Soghrati *, Anand Nagarajan, Fei Xiao, Bowen Liang, Hossein Ahmadian, Ming Yang	Philip Clarke *, Reza Abedi, Robert Haber	

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 520D	MS 505	Fluid-Structure Interaction Algorithms and Applications Chair(s): Justin Kaufmann		
Condition Assessment and Prognosis using Fluid- Structure Interaction within a Reduced-Order Model Tracking Inversion Framework	Large Amplitude Aeroelastic Oscillations of a Cantilever with Structural and Aerodynamic Nonlinearities: Theory and Wind Tunnel Test	Simulation of a Proposed Fluid-Structure Interaction Validation Case	An Arbitrary Lagrangian- Eulerian Approach to Acoustic Streaming	
Justyna Kosianka*, Wensi Wu, Christopher Earls	Brandon Robinson *, Leandro Jose Rocha da Costa, Dominique Poirel, Chris Pettit, Mohammad Khalil, Abhijit Sarkar	Jonathan Pitt*	Francesco Costanzo*, Nitesh Nama, Tony Huang	
Room: 520F	MS 506	Free and Moving Boundary Problems: Methods and Applications Chari(s): TBD		
Keynote Presentation:	A Splitting Algorithm for the Numerical Simulation of Sediment Transport in Free Surface Flows	A Lattice-Boltzmann Based Multiscale Approach for Simulating Nanoparticle Transport in Cellular Blood Flow	Progress Towards the Development of a 2D Immersed Boundary Solver for the Simulation of Particles at Fluid-Fluid Interfaces	
Alexandre Caboussat*		Zixiang Liu *, Yuanzheng Zhu, Rekha Rao, Jonathan Clausen, Cyrus Aidun	Adam O'Brien *, Markus Bussmann	
Room: 520E	MS 507	Phase-field Modeling and Sin Chair(s): Tymofiy Gerasimov	nulation in Fluids, Solids and B	liomechanics
A Parallel Adaptive Multigrid Approach to Simulating Phase-Field Problems	Development of Phase-Field Models of Tumor Growth with Radiation Effects	Using Hyper-Dual Numbers to Integrate an Equation of State into a Phase Field Model for Droplets	A Novel Numerical Algorithm For Modeling Solidification Of Water	A CFD Study of Supercooled Cloud Size Droplet Impact on a Superhydrophobic Surface
Matthew Hubbard *, Feng Wei Yang, Peter Jimack	Ernesto A.B.F. Lima*, Amir Shamoradi, David A. Hormuth II, J. Tinsley Oden, Thomas Horger, Barbara Wohlmuth, Thomas E. Yankeelov	Felix Diewald*, Charlotte Kuhn, Michaela Heier, Martin Horsch, Kai Langenbach, Hans Hasse, Ralf Müller	Hasan Shetabivash*, Ali Dolatabadi, Marius Paraschivoiu	Reza Attarzadeh *, Firoozeh Yeganehdoust, Ali Dolatabadi

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 518C	MS 508	Stabilized and Multiscale Methods for Interface Mechanics Chair(s): Timothy Truster and Arif Masud		
Embedded Boundary Conditions for Plate Bending Problems	Stabilized Finite Element Method for Compressible Phase Change Phenomena	Adaptive Variational Multiscale Method for Non- Newtonian Multiphase Flows	Recent Advances in Spline- Based Embedded Finite Element Methods	CutFEM: Discretizing Geometry and Partial Differential Equations in Multidimensional Multiphysics Problems
Isaac Harari*	Ehsan Shams *, Fan Yang, Yu Zhang, Chao Liu, Mark Shephard, Onkar Sahni, Assad Oberai	Elie Hachem*, Stéphanie Riber, Youssef Mesri, Rudy Valette	John Dolbow *, Yingjie Liu, Wen Jiang	André Massing*, Erik Burman, Peter Hansbo, Mats G. Larson
Room: 524C	MS 602	Advances in Topology Optim Chair(s): Xu Guo	ization for Manufacturing	
Average-Worst-Case Topology Optimization using Stochastic Programming and Conditional Value-at-Risk	Stochastic Sensitivity Analysis for Reliability-Based Topology Optimization			
Geoffrey Oxberry *, Cosmin Petra, Mark Stowell, Andrew Barker, Daniel White, Daniel Tortorelli	Xuchun Ren*, Xiaodong Zhang			
Room: 525B	MS 603	Bayesian Statistical Inversior Chair(s): TBD	n in Engineering Mechanics	
Model Discrepancy Calibration Across Experiments	Bayesian Model Calibration with an Embedded Statistical Characterization of Model Error	Bayesian Selection of Optimal Physics-Based Model and Modeling Error	Bayesian Model Selection in Continuous Model Domain using Automatic Relevance Determination with Applications to Nonlinear Aeroelasticity	
Kathryn Farrell-Maupin *, Laura Swiler	Xun Huan *, Khachik Sargsyan, Habib Najm	Philippe Bisaillon *, Rimple Sandhu, Mohammad Khalil, Chris Pettit, Dominique Poirel, Abhijit Sarkar	Rimple Sandhu *, Chris Pettit, Mohammad Khalil, Dominique Poirel, Abhijit Sarkar	

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 519B	MS 605	New Trends in Topology Optimization Chair(s): Philip Buskohl		
A Feasible Minimum Energy State Method for Constrained, Multi-Disciplinary Topology Optimization Problems	Robust Topology Optimization under Loading Uncertainty using a Density Matching Approach	Stress-Constrained Level Set Topology Optimization for Compliant Mechanisms	A Maximum Filter for Material Nonlinear Topology Optimization using the Ground Structure Method	
Willem Roux*	Bingxiao Du *, Timoleon Kipouros, Geoff Parks, Yong Zhao, Wen Yao, Xiaoqian Chen	Hélio Emmendoerfer Junior*, Eduardo Alberto Fancello, Emílio Carlos Nelli Silva	Sylvia Almeida *, Glaucio Paulino	
Room: 523A	MS 705	Instabilities in Solids Across Chair(s): Christian Linder	the Scales	
Keynote Presentation:	A Physics-Based Reduced- Order Model for the Dynamic and Post-Buckling Behavior of Tensegrity Structures and Metamaterials	A Numerical Study of Branching and Stability of Solutions to Three- Dimensional Martensitic Phase Transformations using Gradient-Regularized, Non- Convex, Finite Strain Elasticity	A Systematic Study of Swelling-Induced Instabilities of Hydrogels	Computational Framework for Homogenization at Finite Deformation with Stability Considerations using Isogeometric Analysis
Julian Rimoli*		Koki Sagiyama *, Shiva Rudraraju, Krishna Garikipati	Berkin Dortdivanlioglu *, Andreas Krischok, Ali Javili, Christian Linder	Ryan Alberdi*, Kapil Khandelwal
Room: 518A	MS 706	Modeling and Simulation for S Chair(s): Greg Wagner	Solidification Processes in Mai	nufacturing
Dendrite Fragmentation and the Columnar-to-Equiaxed Transition During Solidification	Finite Element Modeling of Ceramic Deposition by LBM (SLM) Additive Manufacturing	A Space-Time Computational Vademecum Based Approach for Multi-Parametric Simulations of Welding Processes	Multi-Scale Solidification Simulations of Additive Manufacturing Process in Metals	
P.W. Voorhees*, T. Cool, E.B. Gulsoy	Qiang Chen *, Gildas Guillemot, Charles-André Gandin, Michel Bellet	Ye Lu *, Nawfal Blal, Anthony Gravouil	Gregory Wagner *, Stephen Lin, Wing Kam Liu	

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 516D	MS 802	Advances in Atomistic-to-Continuum Coupling Techniques Chair(s): Ron Miller		
Keynote Presentation:	A New Predictor-Corrector Method for Efficient Modeling of Surface Effects	Atomistic-to-Continuum Influenced Consistent Coupling of Nonlocal Diffusion Problems	Blended Force-Based Quasicontinuum Method for Multilattice Materials	
Mitchell Luskin* Andrew Binder, Christoph Ortner		Xingjie Li *, Jianfeng Lu, Xiaochuan Tian, Qiang Du	Derek Olson*, Xingjie Li	
Room: 515B	MS 805	Computational Modeling of M Chair(s): Jae Hyun Park	lulti-Functional Materials	
Ab Initio Study of Interfacial Magnetoelectric Effect in Oxide Superlattices	Molecular Dynamics Analysis of DNA-Micelle Complex and its Electrophoretic Transport for Drug Delivery System			
Jaekwang Lee*	Jae Hyun Park *, Narayana Aluru			
Room: 515C	MS 808	Modeling at the Intersection of Chair(s): Michael Falk	of First Principles Methods, Me	chanics and Mathematics
Energy Renormalization Approach to Coarse-Graining of Polymer Dynamics	Potential Energy Landscape and Dynamics of Inherent Structure Evolution in Metallic Glasses	Mesodynamics - A Hybrid Deterministic-Statistical Framework for Molecular Dynamics	The Properties of Dislocation Cores in Refractory Body- Centered Cubic Metals Affected by Ideal Strength Behaviors	
Sinan Keten *, Jake Song, Wenjie Xia, Cheol Jeong, David Hsu, Fred Phelan, Jack Douglas	Yue Fan*	Amuthan Ramabathiran *, Pilar Ariza, Michael Ortiz	Liang Qi *, Chaoming Yang, Yongjie Hu	

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 516E	MS 812	Multiphysics Computation an Chair(s): Shaoqiang Tang	d Coupled Effects	
Matching Boundary Conditions for a Heterogeneous Atomic Chain	From Forging to End of Lifecycle: A Multiphysics Simulation Workflow for Hydrogen Embrittlement	The Thermal Transport in Branched Carbon Nanotube	A Computational Study on Multi-Physics Coupling Effects in Ultrashort-Pulse Laser Material Processing	Coupled Moisture Diffusion and Mechanical Analysis to Evaluate the Differential Drying of Concrete: Application to Failure Prediction of Concrete Material
Shaoqiang Tang ⁺, Xingru Chen, Shuyu Liu	Gabriel de Frías *, James Foulk III, Michael Veilleux, Kevin Manktelow, Lauren Beghini, Alexander Hanson, Andrew Stershic, Jakob Ostien, Dorian Balch	I-Ling Chang*, Yu-Wei Lo	Dong Qian *, Mohammad Rezaul Karim, Zhenpeng Qian	Razakamandimby Ranjanoro Diamondra Fenosoa Tiana*
Room: 523B	MS 904	BIE/BEM and Their Fast Solut Chair(s): Martin Schanz	tion Methods	
A Double-Layer Interpolation Method for BIE Implementation	On the Construction and Use of High-Order Boundary Element	Space-Time Boundary Element Methods for Dynamic Trusses	The Moving Porous Green's Function Associated with Dopplers Effect in BEM and Analysis for Vehicle Jumping on Highways	
Jianming Zhang *, Weicheng Lin, Yunqiao Dong, Chuanming Ju	Hang Ma*, Donghong He	Dominik Pölz *, Michael Helmut Gfrerer, Martin Schanz	B.Y. Ding*, Y.Z. Song	
Room: 524A	MS 908	Finite Element Methods for W Chair(s): Leszek Demkowicz	ave Propagation	
Advancing Hyperbolic Solutions through Unstructured Meshes by Mapped Tent Pitching	Analysis of a Mixed Discontinuous Galerkin Method for Incompressible Magnetohydrodynamics	Symplectic HDG Methods for Wave Propagation Phenomena		
Jay Gopalakrishnan*	Weifeng Qiu*	Manuel Sanchez *, Bernardo Cockburn, Ngoc Nguyen, Jaime Peraire		

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 522BC	MS 915	Polygonal and Polyhedral Discretizations in Computational Mechanics Chair(s): Gianmarco Manzini		
Discontinuous Galerkin Approximation of Flows in Fractured Porous Media on Polytopic Grids	A Minus One Norm Stabilized DG Method on Polygonal Meshes	Arbitrary Polygonal Elements using Discontinuous Petrov- Galerkin (DPG) Method	Preconditioners for the Virtual Element Method: FETI-DP and BDDC	Polyhedral Discretizations using Tetrahedral Subdivisions for Applications in Nonlinear Solid Mechanics
Chiara Facciolà *, Paola Francesca Antonietti, Alessandro Russo, Marco Verani	Silvia Bertoluzza *, Daniele Prada	Jaime Mora Paz *, Ali Vaziri Astaneh, Federico Fuentes, Leszek Demkowicz	Micol Pennacchio *, Silvia Bertoluzza, Daniele Prada	Joseph Bishop*, N. Sukumar
Room: 514A	MS 1003	Enabling Technologies and Simulation Practices for Advanced Scientific and Engineering Computation Chair(s): William Barth		
Prototyping the Next Generation of Aria	Mesh Generation for Large- Scale Multi-Physics Simulations using HPC Architectures	Coupling of Molecular Dynamics and Lattice- Boltzmann on Spatially- Adaptive Grids	A Practical Method for Automatic Camera Paths Generation in Scientific Visualization Storytelling	Immersive Simulation of the Reduction of Femoral Diaphyseal Fracture
Jonathan Clausen*, Chris Forster, David Noble, Christian Trott, Si Hammond, Mark Hoemenn, Paul Lin	Andreas Lintermann*	Michael Lahnert* , Takayuki Aoki, Carsten Burstedde, Miriam Mehl	Benoît Ozell*, Anis Benyoub	Mohamed Mediouni* , Djemel Ziou, François Cabana
Room: 516A	MS 1102	Advances in Error Analysis and Computational Aspects of Deterministic and Stochastic PDE Eigenvalue Problems Chair(s): Jeffrey Ovall		
Convergence of Adaptive FEM for the Approximation of Eigenvalues of PDEs in Mixed Form	Efficient Solution of Eigenvalue Problems Related to Coupled Acoustical Systems	Eigenlocking in Shells of Revolution		
Lucia Gastaldi*	Antti Ojalammi *, Antti Hannukainen	Harri Hakula*		

04:40 PM	05:00 PM	05:20 PM	05:40 PM	06:00 PM
Room: 514B	MS 1104	A Posteriori Error Estimation and Adaptivity Chair(s): Marc Laforest		
A Posteriori Error Estimation for Reduced Basis Approximation by the Method of Random Duals	A Posteriori Mesh Quality Control in Probabilistic Bayesian Inversion	Goal-Oriented Proper Generalized Decomposition with Error Estimation and Adaptivity	A Posteriori Error Estimation for Several Classes of Finite Difference Schemes	
Kathrin Smetana *, Anthony T. Patera	Pierre Kerfriden *, Abhishek Kundu, Susanne Claus	Kenan Kergrene *, Serge Prudhomme, Ludovic Chamoin, Marc Laforest	Simon Tavener *, Jehanzeb Chaudhry, Jeb Collins, John Shadid	
Room: 524B	MS 1105	Data Driven Paradigms and Uncertainty Quantification in Computational Mechanics Chair(s): Karthik Duraisamy		
Multilevel-Multifidelity Expansions with Application to Emulator-Based Bayesian Inference	Optimal Multi-Level Monte Carlo Methods for the Stochastic Drift-Diffusion- Poisson System and for Stochastic Homogenization	Modeling Model-Form Uncertainties in Eigenvalue Computations using a Data- Driven Stochastic Reduced- Order Model	Data-Driven Modeling of Turbulent Boundary Layer Noise	
Michael Eldred *, Gianluca Geraci, Alex Gorodetsky, John Jakeman	Clemens Heitzinger *, Leila Taghizadeh, Amirreza Khodadadian, Stefan Rigger	Adrien Bos *, Charbel Farhat, Phil Avery, Christian Soize	Gregory Bartram*	

Thursday Plenary Speaker 9:00-9:45 am

Anthony Patera

Massachusetts Institute of Technology

Parametrized Model Order Reduction for Component-to-System Synthesis and Analysis

Room: 517BC

Abstract: In this talk we describe and demonstrate a model order reduction methodology for efficient solution of partial differential equations characterized by many (spatially distributed) parameters. The approach is relevant in many-query and real-time contexts such as design, shape and topology optimization, parameter estimation and classification, and reconditioning. The numerical approach comprises four principal ingredients: component-to-system synthesis, formulated as a static-condensation procedure; model order reduction, informed by evanescence arguments at component interfaces (port reduction) and low-dimensional parametric manifolds in component interiors (reduced basis techniques); offline-online computational decomposition strategies; and parallel calculation, implemented in a cloud environment. We provide examples in acoustics, linear elasticity, and nonlinear solid mechanics, with applications from musical instruments to shiploaders.

Bio: Anthony T. Patera is Ford Professor of Engineering and Professor of Mechanical Engineering at the Massachusetts Institute of Technology (MIT), and Co-Director of the MIT Center for Computational Engineering. In 2013-2014 Professor Patera also held a Research Chair from the Paris Foundation for Mathematical Sciences hosted at the University Pierre and Marie Curie. His research interests include partial differential equations, variational techniques, computational methods, numerical analysis, model order reduction, a posteriori error estimation, real-time simulation, data assimilation and classification, fluid dynamics, heat transfer, and acoustics and continuum mechanics. Professor Patera has undergraduate and graduate degrees in Mechanical Engineering from MIT and a doctoral degree in Applied Mathematics also from MIT.

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 516A	MS 001	Reliable Automated Simulation Technologies: A Symposium Celebrating the 65th Birthday of Professor Mark S. Shephard Chair(s): Kenneth Jansen		
Simulations of Gas-Liquid- Solid Interactions using the Immersed Approach	Reliable Modelling of Neural Network at Extreme Scale: Status, Opportunities and Challenges	Modeling and Simulation of the Mechanical Behavior of Fiber Networks with Cohesion		
Lucy Zhang*	Fabien Delalondre*	Vineet Negi*, Catalin Picu		
Room: 514C	MS 105	Direct and Inverse Methods for Cardiovascular and Pulmonary Mechanics Chair(s): Alberto Figueroa		
Characterization of Airway Wall Mechanics	Pressure Induced Damage of Pulmonary Artery: Mechanical Parameters Estimation	Constitutive and Computational Modelling with Fluid-Structure Interactions of Venous Tissues	Parametric Simulations of Trileaflet Valve Function	Simulating the Effect of Permanent Set on Bioprosthetic Heart Valves under Cyclic Loading
Mona Eskandari *, Alberto Arvayo, Marc Levenston, Ellen Kuhl	Sara Roccabianca *, Marissa Grobbel, Hailu Getachew, Yuheng Wang, Laura Nye, Seungik Baek	Nayyan Kaul *, Hsiao-Ying Shadow Huang	Rana Zakerzadeh*, Ming-Chen Hsu, Michael Sacks	Will Zhang*, Michael Sacks
Room: 515A	MS 107	Mechanobiology of Cells, Ves Chair(s): Roger Sauer	sicles and Biomembranes	
A Coarse-Grained Model for Cell Nuclear Pore Complex and Nanoparticles Interaction	Effect of Lipid Type and Surface Charges on the Bending Modulus of Lipid Bilayer Membranes	Application of Atomic Force Microscopy for Investigation of Anisotropic Mechanical Properties of Living Cells		
Xianqiao Wang*, Liuyang Zhang	Adarsh Chaurasia*, Andrew Rukangu, Eric Freeman, Michael Philen, Gary Seidel	Chien-Kai Wang *, Ping-Liang Ko, Yi-Chung Tung		

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 519A	MS 202	Advances in Meshfree Particle Methods for Fluid Mechanics Chair(s): Ahmad Shakibaeinia and Tewfik Mahdi		
Developing SPH Based Modeling of Volcanic Plumes using Modified SPH Schemes	Numerical Simulation of Natural Convection Heat Transfer in a Heat Exchanger using an Incompressible Smoothed Particle Hydrodynamics (SPH)	Towards a Meshfree Finite Difference Model for Reactive Mixing Problems		
Zhixuan Cao *, Abani Patra	Faroogh Garoosi *, Ahmad Shakibaeinia	Timo Wächtler*, Jörg Kuhnert		
Room: 520B	MS 204	Computational Methods in Er Chair(s): Kazuo Kashiyama	nvironmental Fluid Mechanics	
A RB-VMS Modeling Framework for Sediment Transport: The Coupling of Turbulence and Rheological Behavior	Interfacing Geotechnical and Hydrodynamic Models to Resolve Failure Mechanisms of Flood Control Systems under Storm Surge	Using a Sponge Layer as a Boundary Treatment for Open-Ocean Boundaries in a Finite-Element-Based Coastal Ocean Model	Towards an Adaptive Discontinuous Galerkin Storm Surge Model	
Gabriel M. Guerra *, Souleymane Zio, Paulo Paraizo, Renato Elias, Fernando A. Rochinha, Alvaro L.G.A. Coutinho	Dylan Wood *, Ethan Kubatko, Abdollah Shafieezadeh, Mehrzad Rahimi	Damrongsak Wirasaet *, Juan Gonzalez, William J. Pringle, Andika Suhardjo, Joannes J. Westerink	Ethan J. Kubatko*	
Room: 520A	MS 206	Model Reduction in Computa Chair(s): Jeff Borggaard	tional Fluid Dynamics	
Data-Driven Reduced-Order Modeling of Fluids Systems	High-Dimensional Separable Compression and Basic Operations: A PGD Arithmetic Toolbox	Computational Vademecum Efficient Simulation of Stokes Flow		
Scott Dawson*, Clarence Rowley	Pedro Díez *, Sergio Zlotnik, Antonio Huerta	Antonio Huerta*		

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 520C	MS 301	Advancements in Hydraulic Fracture Simulation Chair(s): Robert Gracie		
Keynote Presentation:	A Review of Fundamental Issues in Fluid Mechanics of Hydraulic Fracturing	Modeling of Proppant Transport in a Fracture with Effects of Jamming and Unyielding	On Modeling of Particles Settling in Hele-Shaw Flows of Non-Newtonian Fluids	Benchmark Solutions for Models of Solids Transport in Hele-Shaw Cell
Andrei Osiptsov*		Sergei Boronin *, Andrei Osiptsov, Jean Desroches, Brice Lecampion	Maxim Ivanov *, Vadim Isaev, Denis Bannikov, Rostislav Romanovskii	Vadim Isaev *, Ivan Velikanov, Dmitry Kuznetsov, Denis Bannikov, Alexey Tikhonov
Room: 518B	MS 401	Computational Fracture Mechanics Chair(s): Adrian Lew		
A Class of Examination of Simulation for Ductile Fracture	A Local Crack-Tracking Strategy to Model Three- Dimensional Crack Propagation with Embedded Methods	A Modified Non-Local GTN Damage Model for High Strain Rate Loading	Crack Detection by Scaled Boundary Finite Element Method and Global Optimization Algorithms	
Hirofumi Sugiyama *, Kazumi Matsui, Takahiro Yamada	Chandrasekhar Annavarapu*, Randolph Settgast, Efrem Vitali, Joseph Morris	Nisha Mohan*, Gary Dilts	Adrian W. Egger *, Savvas P. Triantafyllou, Eleni N. Chatzi	
Room: 525A	MS 402	Modeling and Simulation for Complex Material Behavior Chair(s): Patrick Diehl		
Keynote Presentation:	Short Fiber Reinforced Thermoplastic Composite Modelling using Full Field Computing, Application to Glass Fiber Reinforced PEEK	Plastic Deformation and Non- linear Damage Evolution Modeling for Pipeline Steel	Towards the Identification of Damage Parameters from Full-Field Measurements within the Finite Strain Framework	
Boris Burgarella *, Aurélien Maurel-Pantel, Noël Lahellec, Jean-Luc Bouvard, Hervé Moulinec, Frédéric Lebon, Noëlle Billion		Hari Simha*	Francesco Bettonte*, Sylvia Feld-Payet, David Lévêque, Jacques Besson	

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 521BC	MS 403	Modeling and Simulation of Damage and Fracture in Brittle and Quasi-Brittle Materials Chair(s): Robert B. Haber		
Combining Continuum Damage with a Cohesive Zone Model: Modeling Damage in Quasi-Brittle Materials with Application to Masonry Structures	Modeling and Simulation of Patched Structure under Low Velocity Impact Loading	Dislocation Dynamics Modeling of Fracture Toughness and Plasticity at Crack Tip	ERR Associated with Crack Growth in Quasi-Brittle Materials	
Shenghan Zhang*, Nicolas Richart, Katrin Beyer	Stephanie TerMaath*	Hayato Suga *, Akiyuki Takahashi	Mohamed Chabaat *, Hillal Ayas, Mokhtar Touati	
Room: 520F	MS 506	Free and Moving Boundary Problems: Methods and Applications Chair(s): TBD		
Finite-Element Simulation and Optimal Control of Free- Surface Problems	Magnetophoretic Interaction of a Pair of Ferrofluid Droplets in a Rotating Magnetic Field	A 3D Immersed Boundary Method for Viscoelastic-Fluid- Structure Interaction		
Nicola Parolini *, Ivan Fumagalli, Mattia Tamellini, Marco Verani	Mingfeng Qiu *, Shahriar Afkhami, Ching-Yao Chen, James Feng	Luoding Zhu*		
Room: 523A	MS 705	Instabilities in Solids Across Chair(s): Emma Lejeune	the Scales	
Fractures with Constricted Opening	Transitional Negative Stiffness as a New Form of Instability	Kink Band Instabilities in Layered Media		
Junxian He*, Elena Pasternak, Arcady Dyskin	Yuan Xu*, Arcady Dyskin, Elena Pasternak	Henrik M. Jensen*, Jens L. Wind, Simon P.H. Skovsgaard		

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 516D	MS 802	Advances in Atomistic-to-Continuum Coupling Techniques Chair(s): Ellad Tadmor		
Grain Boundary Structural Phase Transition under Mechanical Loading in Cu	Atomistic Investigation and Continuum Model Prediction of Hydrogen Diffusion along Grain Boundaries	Atomic Interaction Mechanisms of Coherent Twin Boundary and Stacking Fault Tetrahedron under Shear	Amorphous Silica: From Molecular Dynamics to the Continuum	The Predicted Dielectric Constant of an Amorphous PVDF Changing with Temperature by Molecular Dynamics Simulations
Mohammad Aramfard*, Chuang Deng	Jun Song*, Xiao Zhou	Lianping Wu*, Wenshan Yu, Shuling Hu, Shengping Shen	William Schill*, Stefanie Heyden, Michael Ortiz	Taotao Hu *, Qian Deng, Shengping Shen
Room: 515C	MS 808	Modeling at the Intersection of First Principles Methods, Mechanics and Mathematic Chair(s): Vikram Gavini		chanics and Mathematics
Keynote Presentation:	The Materials Science of Chemically Driven Elastic Incompatibility: A Multi-Physics Study of Lithium Ion Battery Electrode Li_(1+x) Ti_2 O_4	Spectrum Slicing using Chebyshev Polynomials	Molecular Dynamics Based Predictive Modeling of High Strain Rate Fragmentation in Metals	Large and Fast Density Functional Theory Calculations
Michael Falk* , Tonghu Jiang, Shiva Rudraraju, Krishna Garikipati, Anton van der Ven		Xin Wang *, Michael Lee, Jaroslaw Knap	Doyl Dickel *, Bradley Huddleston, Mark Horstemeyer	Phanish Suryanarayana*
Room: 523B	MS 904	BIE/BEM and Their Fast Solution Methods Chair(s): Jianming Zhang		
Harmonic Balance-Boundary Element Method for 2-D Wave Scattering by a Crack with Contact Boundary Conditions	A New Simple Multidomain Fast Multipole BEM	Boundary Integral Representation for Solenoïdal Fields		
Taizo Maruyama *, Terumi Touhei	Yijun Liu*, Shuo Huang	Mykola Yasko*		

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 524A	MS 908	Finite Element Methods for Wave Propagation Chair(s): Jay Gopalakrishnan		
DG Methods, Wave Propagation, and Geostrophic Adjustment in Geophysical Fluid Flows	Mixed Finite Elements for Nonlinearly Damped Global Tide Models	A Finite Element Method for the Jones Eigenmodes of an Elastic Scatterer	An Explicit Scheme with Local Time Stepping for One- Dimensional Discontinuous Wave Propagation in Heterogeneous Solids	Spectral Seismic Analysis of Underground Long Tunnels by 2.5D Finite/Infinite Element Approach
Robert Higdon*	Robert Kirby*, Jameson Graber	Nilima Nigam*	Radek Kolman *, Sang Soon Cho, Jose G. Gonzalez, K.C. Park, Arkadi Berezovski	Yeong-Bin Yang *, Hsiao-Hui Hung
Room: 522BC	MS 915	Polygonal and Polyhedral Discretizations in Computational Mechanics Chair(s): Joseph Bishop		
Implementation of Discontinuous Skeletal Methods on Arbitrary- Dimensional, Polytopal Meshes using Generic Programming	Polyhedral Smoothed Finite Element Method for Thermoelastic and Thermal Contact Analysis	Polyhedral Elements using an Edge-Based Smoothed Finite Element Method for Nearly Incompressible Material	Improved Partitioned Element Method for Constructing Higher Order Shape Functions on Arbitrary Polyhedra	High-Order Polygonal Elements for Elastodynamic Problems
Matteo Cicuttin*, Daniele Di Pietro, Alexandre Ern	Hobeom Kim*, Seyoung Im	Chan Lee *, Hobeom Kim, Jungdo Kim, Seyoung Im	Brian Giffin*, Mark Rashid	Hauke Gravenkamp*
Room: 515B	MS 1001	Building Advanced Capabilities in Scientific Software Chair(s): Vikram Garg		
Continuous Integration for Large-Scale Scientific Software Development	Source Transformation Algorithmic Differentiation of Memory Allocation and Pointer Manipulation	MIT Uncertainty Quantification (MUQ): Flexible Software for Connecting Uncertainty Quantification Algorithms and Applications	Development and Applications of the Discrete Adjoint Solver in PETSc	Implementing Generalized Adjoint Capabilities in libMesh
Andrew Slaughter*	Sri Hari Krishna Narayanna* , Laurent Hascoet, Jean Utke	Andrew Davis *, Matt Parno, Youssef Marzouk	Hong Zhang*, Emil Constantinescu	Roy Stogner*, Vikram Garg

10:15 AM	10:35 AM	10:55 AM	11:15 AM	11:35 AM
Room: 514A	MS 1003	Enabling Technologies and S Engineering Computation Chair(s): Benoît Ozell	imulation Practices for Advance	ced Scientific and
Transparent Performance Monitoring for Engineering Computation	Profiling AMR/C Computations in MontBlanc Exascale Prototype	On Dynamic Load Balancing Schemes for Adaptive Finite Element Solvers	Balancing Domain Decomposition Method for Finite Element Analysis of Large-Scale Assembly Structure Modeled using Millions of Multi-Point Constraints	
William Barth*, Todd Evans	Fabio Canesin *, Jose Camata, Alvaro Coutinho	Youssef Mesri*, Elie Hachem	Tomoshi Miyamura*	
Room: 514B	MS 1104	A Posteriori Error Estimation and Adaptivity Chair(s): Marc Laforest		
Adaptivity of a B-Spline Based Finite-Element Method for Modelling Wind-Driven Ocean Circulation	Anisotropic A Posteriori Error Estimation and Mesh Adaptation for the Monodomain Model in Cardiac Electrophysiology	Mapping Error Quantification and Adaptive Remeshing for Large-Deformation Solid Mechanics		
Ibrahim Al Balushi *, Wen Jiang, Gantumur Tsogtgerel, Tae-yeon Kim	Edward Boey *, Yves Bourgault, Thierry Giordano	Andrew Stershic*		
Room: 524B	MS 1105	Data Driven Paradigms and U Chair(s): Krishna Garikipati	Incertainty Quantification in Co	omputational Mechanics
Data-Driven Probabilistic Calibration of Material Models from Small Datasets and its Influence on Structural Response	A Deep Learning-Based Constitutive Model for Finite Element Method	Tensor-Based Metamodels for the Calibration of Constitutive Laws in Material Science		
Jiaxin Zhang *, Aakash Bangalore Satish, Pawel Woelke, Michael Shields	Fariborz Ghavamian*, Angelo Simone	Clément Olivier *, David Ryckelynck, Julien Cortial		

Index

Abboud, Nabil, Duke U., 19, 68 Abdedou, Azzedine, ETS, 44 Abdeljawad, Fadi, Sandia Nat'l Laboratories, 16 Abdelkader, Ahmed, U. of Maryland, 85 Abdolvand, Hamidreza, Western U., 37 Abdulle, Assyr, EPFL, Lausanne, Switzerland, 17 Abdullhaque, Abdullah, NTNU, 31 Abe, Kazuki, The U. of Tokyo, 37 Abe, Yoshiaki, Imperial College London, 13 Abedi, Reza, U. Tenn, Space Inst., 24, 35, 64, 80, 89 Abiraman, Krithika, U. of Connecticut, 13 Acharya, Ranadip, UTRC, 48 Acton, Katherine, U. St Thomas, 64 Adamczyk, Wojciech, Silesian Univ. Technology, 37 Adley, Mark, US Army ERDC, 35 Afkhami, Shahriar, NJIT, 69, 101 Aggarwal, Ankush, Swansea U., 77 Aquiar, Adair, U. of São Paulo, 63 Aguilo, Miguel, Sandia Nat'l Lab., 37, 47, 70 Ahmadian, Hossein, The Ohio State U., 89 Ahn, Tae Sik, Kunsan Nat'l U., 63 Aidun, Cyrus, Georgia Inst. of Technology, 90 Ainsworth, Mark, Brown U., 24, 65 Aitharaju, Venkat, GM Corp., 21 Akbarzadeh, Hamid, McGill U., 82 Alberdi, Ryan, U. of Notre Dame, 92 Al-Hinai, Omar, Siemens PLM, 73 Alidoost, Kazem, U. of Illinois, 36 Allahverdi, Navid, New York City College of Tech., 45 Alleman, Coleman, Sandia Nat'l Labs, 16, 18, 20, 46 Allix, Olivier, LMT-Cachan, ENS-Paris-Saclay, 18 Allu, Srikanth, Oak Ridge Nat'l Laboratory, 49 Almasi, Ashkan, U. of Colorado Boulder, 28 Almeida, Sylvia, Federal U. of Goias, 92 Alsahly, Abdullah, Ruhr-Universität Bochum, 14 Alsendi, Ahmad, Wayne State U., 26 Alshareef, Ahmed, U. of Virginia, 43 Altai, Zainab, Insigneo, Sheffield U., 55 Aluru, Naravana, UIUC, 93 Alyanak, Edward, Air Force Research Laboratory, 81 Amabili, Marco, McGill U., 59 Amar, Adam, NASA Johnson Space Center, 80 Anand, Lallit, MIT, 67

Anciaux, Guillaume, EPFL, Lausanne, Switzerland, 48 Anderson, Robert, LLNL, 61 Andrade Pires, Francisco, U. of Porto, 71 Andreykiv, Andriy, Plaxis bv, 32 Anitescu, Cosmin, Bauhaus-Univ. Weimar, 62, 72 Annavarapu, Chandrasekhar, LLNL, 88, 100 Antolin, Pablo, EPFL, Lausanne, Switzerland, 20 Antonietti, Paola Francesca, Politecnico di Milano, 95 Aoki, Takayuki, Tokyo Inst. of Technology, 95 Aoyagi, Kenta, Tohoku U., 48 Appoo, Jehangir J., U. of Calgary, 24 Aguino, Wilkins, Duke U., 21, 29, 47, 81 Aragón, Alejandro M., Delft U. of Technology, 58 Arai, Koichiro, Tokyo U. of Science, 36 Aramfard, Mohammad, U. of Manitoba, 102 Ariza, Pilar, Universidad de Sevilla, Spain, 61, 93 Arora, Jasbir, The U. of Iowa, 58 Arriaga, Miguel, Columbia U., 46 Arroyo, Marino, LaCaN UPC, Spain, 22, 77, 87 Arun, Srinivasa, Texas A&M U., 63 Arvayo, Alberto, Stanford U., 98 Ata, Riadh, EDF-LNHE-LHSV, 44, 56 Atallah, Nabil, Duke U., 50, 80 Atkinson, Steven, U. of Notre Dame, 52 Attarzadeh, Reza, Concordia U., 90 Atzberger, Paul, U. of California Santa Barbara, 59, 87 Aubry, Romain, U.S. Naval Research Laboratory, 33 Auricchio, Ferdinando, U. of Pavia, 20 Avery, Phil, Stanford U., 78, 96 Avas, Can. Delft U. of Technology, 17, 28, 59 Avas, Hillal, 101 Azdoud, Yan, Johns Hopkins U., 16

Babaniyi, Olalekan, Duke U., 47 Baber, Forrest, Virginia Commonwealth U., 84 Babu, Sudarsanam, U. of Tennessee, Knoxville, 28 Bacigalupo, Andrea, IMT Lucca, 18 Bacuta, Constantin, U. of Delaware, 51, 63, 74 Badachhape, Andrew, Washington U. in St. Louis, 24 Baek, Hyunil, Yonsei U., 72 Baek, Kyungmin, Seoul Nat'l U., 49 Baek, Seungik, Michigan State U., 98 Bagri, Akbar, Johns Hopkins U., 30 Bahmani, Bahador, U. Tennessee Space Inst., 64 Bai, Jinbo, École Centrale Paris, 49 Bai, Jingsong, Inst. of Fluid Physics CAEP, 35 Baier, Ralf-Dietmar, MTU Aero Engines AG, 13 Baker, Alexander, Wake Forest Sch of Medicine, 33 Baker, William, SOM LLP, 47 Bakoski, Jozsef, Los Alamos Nat'l Laboratory, 30 Balajewicz, Maciej, U. of Illinois, 66 Balch, Dorian, Sandia Nat'l Laboratories, 94 Bale, Rahul, RIKEN AICS, 30 Balin, Riccardo, U. Colorado Boulder, 74 Bambha, Rav, Sandia Nat'l Laboratories, 64 Bandi, Mahesh, OIST, 69 Banerjee, Amartya, LBNL, 61 Banerjee, Dilp, NIST, 89 Bangalore Satish, Aakash, Johns Hopkin U., 104 Bannikov, Denis, Schlumberger, 88, 100 Barbone, Paul, Boston U., 16, 37 Barciaga, Thomas, Ruhr-Universität Bochum, 14, 25 Barkai, Eli, Bar Ilan U., 48 Barker, Andrew, LLNL, 91 Barnard, Ryan, Wake Forest School of Medicine, 33 Barnes, Brian C., U.S. Army Research Laboratory, 29 Barth, William, TACC, 95, 104 Barton, Nathan, Lawrence Livermore Nat'l Laboratory, 28 Bartram, Gregory, Universal Technology Corp., 96 Basu, Prodyot, Vanderbilt U., 39 Batra, Romesh, Virginia Tech, 15 Baum, Joseph, Applied Simulations Inc., 46 Baxter, Sarah, U. St Thomas, 64 Bavkin, Alexev, Lavrentvev Inst. of Hydrodynamics, 78 Bayly, Philip, Washington U. in St. Louis, 24 Bazilevs, Yuri, UCSD, 3, 31, 46 Beall, Mark, Simmetrix Inc., 55 Beaugendre, Héloïse, Bordeaux-INP, IMB, Inria Cardamom, 59 Becker, Richard, U.S. Army Research Laboratory, 29 Beel, Andrew, U. of Colorado Boulder, 37 Beghini, Lauren, Sandia Nat'l Laboratories, 38, 94 Beirao da Veiga, Lourenco, U. of Milano-Bicocca, 73 Beissel, Stephen, Southwest Research Inst., 19 Belak, James, Lawrence Livermore Nat'l Laboratory, 28

Bellet, Michel, Mines ParisTech, 92

Bellis, Cedric, LMA CNRS, 37 Bencoe, Denise, Sandia Nat'l Laboratories, 80 Benítez, Marta, U. of A Coruña, 31 Bensidhoum, Morad, U. Paris Diderot, 12 Benyoub, Anis, École polytechnique Montréal, 95 Berezovski, Arkadi, Tallinn U. of Technology, 103 Bergel, Guy, Sandia Nat'l Laboratories, 46 Berinskii, Igor, Tel Aviv U., 82 Bermúdez, Alfredo, U. of Santiago de Compostela, 31 Bernacki, Marc, PSL - Mines Paristech - CEMEF, 16 Bertoluzza, Silvia, IMATI-CNR, Pavia, Italy, 95 Bertron, Isabelle, CEA/CESTA, Le Barp, France, 35 Bessa, Miguel A., Caltech, 49 Besson, Jacques, Mines ParisTech, Centre des Matériaux, 100 Bettonte, Francesco, ONERA The French Aerospace Lab, 100 Beyer, Katrin, École Polytechnique Fédérale de Lausanne, 101 Bhattacharya, Prosenjit, U. at Buffalo, 48 Bhowmick, Sanjukta, U. of Nebraska-Omaha, 32 Bialecki, Ryszard, Silesian Univ, Technology, 37 Bieber, Simon, Inst. for Structural Mech., U. of Stuttgart, 20 Binder, Andrew, U. of Minnesota, 93 Biros, George, U. of Texas at Austin, 37, 49 Bisaillon, Philippe, Carleton U., 27, 81, 91 Bischoff, Manfred, U. of Stuttgart, 20, 31, 51, 63 Bishop, Joseph, Sandia Nat'l Laboratories, 41, 85, 95, 103 Biswas, Raja, Nat'l U. Singapore, 16 Blais, Bruno, Nat'l Research Council Canada, 47, 80 Blal, Nawfal, Univ Lyon, INSA-Lyon, CNRS UMR, 92 Blanchard, Maxime, LMT-Cachan, ENS-Paris-Saclay, 18 Bobaru, Florin, U. of Nebraska-Lincoln, 26, 78 Bochev, Pavel, Sandia Nat'l Laboratories, 30 Boey, Edward, U. of Ottawa, 104 Boffi, Daniele, U. of Pavia, 63 Bona-Casas, Carles, Universitat de les Illes Balears, 77 Boom, Pieter D., UTIAS, 56 Borden, Michael, North Carolina State U., 40 Borggaard, Jeff, Virginia Tech, 88, 99 Borker, Raunak, Stanford U., 25 Boronin, Sergei, Skoltech, 100

Borouchaki, Houman, U. of Technology of Troyes, France, 41 Bos, Adrien, Stanford U., 96 Boulocher, Caroline, VetAgro-Sup, 12 Bourban, Sébastien E., HR Wallingford, UK, 44 Bourgault, Yves, U. of Ottawa, 3, 51, 104 Bouvard, Jean-Luc, Cemef, France, 100 Boyce, Brad, Sandia Nat'l Labs, 41 Bozzolo, Nathalie, PSL - Mines Paristech - CEMEF, 16 Brandão, Sofia, INEGI, Faculty of Engineering, U. of Porto, 85 Brasil, Revolando, Federal U. of ABC, 40 Breen, David, Drexel U., 30 Briffard, Thomas, GIREF, Université Laval, 86 Bronkhorst, Curt, Los Alamos Nat'l Laboratory, 28, 46 Bruce, Ian, Arup, 26 Brun, Michael, Université de Lyon, INSA-Lyon, 19 Bruna-Rosso, Claire, Politecnico di Milano, 17 Brunini, Victor, Sandia Nat'l Laboratories, 49 Brunner, Thomas, LLNL, 61 Bryant, Corey, Cerner Corporation, 75 Bryant, Eric, Columbia U., 45 Bryant, Stephanie, U. of Colorado-Boulder, 13 Budday, Silvia, U. of Erlangen Nuremberg, 12 Budyn, Elisa, École Normale Supérieure de Cachan, 12 Buganza Tepole, Adrian, Purdue U., 33 Bull, Anthony, Imperial College London, 55 Bunting, Gregory, Sandia Nat'l Laboratories, 69 Burch, Nathanial, Gonzaga U., 51 Bürg, Markus, Plaxis bv, 32 Burgarella, Boris, LMA, France, 100 Burkhardt, John, US Naval Academy, 81 Burman, Erik, U. College London, 91 Burri, Sylvain, LMSSC, CNAM, Paris, France, 40 Burstedde, Carsten, Rheinische Friedrich-Wilhelms-U Bonn. 95 Buskohl, Philip, Air Force Research Laboratory, 37, 81, 92 Bussmann, Markus, U. of Toronto, 90 Cabana, François, Université de Sherbrooke, 95

Cabana, François, Université de Sherbrooke, 95 Caboussat, Alexandre, U. of Applied Sciences W. Switz., 90 Cai, Luyao, Purdue U., 24 Cai, Zhigin, Dalian U. of Technology, 40 Camata, Jose, COPPE/UFRJ, 77, 85, 104 Campagna, Francesco, Politecnico di Torino, 59 Canesin, Fabio, Schlumberger, 104 Cangiani, Andrea, U. of Leicester (UK), 86 Cantwell, Chris, Imperial College London, 44 Cao, Shunxiang, Virginia Tech, 15 Cao, Zhixuan, U. at Buffalo, 99 Cardona, Alberto, CIMEC-CONICET-UNL, 66 Carlberg, Kevin, Sandia Nat'l Laboratories, 66, 78, 88 Carlo, Callari, U. of Molise, 14 Carlson, Neil, LANL, 28, 38 Carnes, Brian, Sandia Nat'l Labs, 32 Carpanen, Diagarajen, Imperial College London, 33, 55 Carpenter, Mark H., NASA LaRC, 56 Carroll, Jay, Sandia Nat'l Labs, 32 Carstensen, Josephine, Johns Hopkins U., 70 Casquero, Hugo, Carnegie Mellon U., 62, 77 Castillo, Jose, SDSU, 71 Castonguay, Samuel, Polytechnique Montréal, 25 Certik, Ondrej, LANL, 38, 66 Cesare Romam Amigo, Ricardo, U. of São Paulo, 60 Chabaat, Mohamed, 101 Chamoin, Ludovic, LMT (ENS Cachan/CNRS/UPSaclay), 17, 29, 47, 96 Champliaud, Henri, École de Technologie Supérieure, 28 Chan, Jesse, Rice U., 62 Chan, Kwai, Southwest Research Inst., 21 Chandrasekhar, Aaditva, UW, Madison, 60 Chang, Chien-Yi, Nat'l Tsing Hua U., 69 Chang, Keng-Wei, Nat'l Taiwan Ocean Univ., 50 Chang, Seongmin, Korea Atomic Energy Research Inst., 68 Chang, Shu-Wei, Nat'l Taiwan U., 13 Charles, Ferenbaugh, Los Alamos Nat'l Laboratory, 66 Charnley, Matthew, Rutgers U., 16 Chatzi, Eleni N., ETH Zurich, 100 Chaudhry, Jehanzeb, U. of New Mexico, 51 Chaurasia, Adarsh, U. of Georgia, 84, 98 Chekired, Mohamed, IREQ, Hydro-Quebec, 57 Chen, B.Y., Inst. of High Performance Computing, 78 Chen, Ching-Yao, Nat'l Chiao Tung U., 101 Chen, J.S., UCSD, 4, 20, 40, 62 Chen, Jishun, Dalian U. of Technology, 70

Chen, Lin, U. of Sheffield, 40, 60 Chen, Pinlei, UIUC, 80 Chen, Qiang, Mines ParisTech, 92 Chen, Qiao, Stony Brook U., 39 Chen, Shi, Inst. of Fluid Physics, 79 Chen, Shikui, SUNY Stony Brook U., 59 Chen, Shunhua, The U. of Tokyo, 14 Chen, Wei, OIST, 69 Chen, Xiaogian, NUDT, 92 Chen, Xingru, Dartmouth College, 94 Chen, Y. P., Huazhong U. of Science, 37 Chen, Zhen, DLUT / MU, 32, 62 Chen, Zi, Dartmouth College, 34, 44 Chen, Ziguang, U. of Nebraska-Lincoln, 26 Cheng, Jiahao, Johns Hopkins U., 16 Cheng, Jie, Rensselaer Polytechnic Inst., 44, 77 Cheng, Lin, U. of Pittsburgh, 60 Cheng, Puikei, Northwestern U., 70 Cheng, Xuanhong, Lehigh U., 34 Cheng, Yingda, Michigan State U., 84 Cherny, Sergey, Inst. Computat. Technol. SBRAS, 35, 78 Chester, Shawn, New Jersey Inst. of Tech., 48 Chi. Heng. Georgia Inst. Technology, 73 Chi, Sheng-Wei, Univ. of Illinois at Chicago, 50 Chiaramonte, Maurizio M., Princeton U., 58 Chiaruttini, Vincent, Onera, 89 Chiba, Akihiko, Tohoku U., 48 Chien, Shih-Shun, Nat'l Chiao Tung U., 55 Chin, Eric B., UC Davis, 46, 85 Ching, Eric, Stanford U., 25 Chmielus, Markus, U. of Pittsburgh, 48 Cho. Jaehvun. EPFL, 48 Cho, Maenghyo, Seoul Nat'l U., 15, 28, 39, 49 Cho, Sang Soon, Korea Atomic Energy Research Inst., 103 Cho, Seungchan, KIMS, 82 Choi, Habeun, Yonsei U., 72 Choi, Youngsoo, Sandia Nat'l Laboratories, 78, 88 Christe, Daniel, Drexel U., 30 Christou, Alexandros, Imperial College London, UK, 33 Chua, Janel, Nat'l U. of Singapore, 60 Chung, Eric, CUHK, 17 Chung, Peter, U. of Maryland, 71 Cicuttin, Matteo, CERMICS - École des Ponts, 103

Cinquin, Bertrand, École Normale Supérieure de cachan. 12 Clarke, Philip, U. of Tennessee Space Inst., 35, 89 Claus, Susanne, Cardiff U., 19, 96 Clausen, Jonathan, Sandia Nat'l Laboratories, 49, 90, 95 Clements, Brad E., Los Alamos Nat'l Laboratory, 39 Clime, Liviu, Nat'l Research Council, CA, 13, 25 Cockburn, Bernardo, U. of Minnesota, 94 Coffin. Peter. Sandia Nat'l Labs. 32 Colomés, Oriol, Duke U., 52, 68 Concha, Felipe A., Pontificia Universidad Catolica de Chile. 87 Constantinescu, Emil, Argonne Nat'l Laboratory, 103 Cooper, Alan J., HR Wallingford, UK, 44 Corbino, Johnny, CSRC, San Diego State U., 71 Corot, Théo, CNAM, 34 Corson, David, Altair Engineering, 55 Cortial, Julien, Safran, 104 Cosimo, Alejandro, CIMEC-CONICET-UNL, 66 Costa, Henrique, COPPE-UFRJ, 86 Costanzo, Francesco, Penn State U., 90 Coulier, Pieter, Stanford U., 83 Crabill, Jacob, Stanford U., 25 Crane, Nathan, Sandia Nat'l Laboratories, 19 Crean, Jared, Rensselaer Poly. Inst., 56 Creuziger, Adam, NIST, 89 Crone, Joshua, US Army Research Laboratory, 72 Cui, Haichao, Dalian U. of Technology, 31 Cui, Tiangang, Monash U., 27 Cumunel, Gwendal, Navier - Université Paris-Est, 40 Cyr, Eric, Sandia Nat'l Laboratories, 64, 85 Dabiri, Sadegh, Purdue U., 60

Dai, Ling, Inst. of High Performance Computing, 27 Dai, Shibin, New Mexico State U., 69 Daniels, Emily, Georgia Inst. of Technology, 70 Daphalapurkar, Nitin, Johns Hopkins U., 24 Darban, Hossein, U. of Genoa, 28 Dargar, Saurabh, Rensselaer Polytechnic Inst., 56 Darve, Eric, Stanford U., 83 Das, Sambit, U. of Michigan, 72 Dascalu, Cristian, U. of Lorraine, LEM3, 46 Dasgupta, Abhijit, U. of Maryland, 30 Davis, Andrew, MIT, 103 Davis, Matthew, Wake Forest School of Medicine, 33 De Lorenzis, Laura, TU Braunschweig, Germany, 45, 80 De Meo, Denni, U. of Strathclyde, 63 de Rooij, Rijk, Stanford U., 33 de Souza Neto, Eduardo, Swansea U., 71 De, Suvranu, Rensselaer Polytechnic Inst., 3, 18, 43, 55, 56, 80 Delamarche, Emmanuel, IBM Research – Zurich, 25 Delorme, Rolland, École Polytechnique Montréal, 20 Demkowicz, Leszek, ICES, UT Austin, 3, 43, 84, 94, 95 Deng, Chuang, U. of Manitoba, 102 Deng, Weihua, Lanzhou U., 48 Deng, Xi, Tokyo Inst. of Technology, 61 Denlinger, Erik, Autodesk Inc., 17 Depale, Bruno, CETIM, 19 Desai, Aiit, Carleton U., 27, 81 Desmeure, Geoffrey, Safran Aircraft Engines, 18 Destuynder, Philippe, CNAM-Paris, 36 Detrez, Fabrice, Université Paris-Est, 49, 62 Deü, Jean-François, LMSSC, CNAM, Paris, France, 40.49 Dey, Mohar, U. of British Columbia, 69 Dev, Saikat, US NRL, 33, 66 Di Stefano. Davide. Université catholique de Louvain. 83 Diamondra Fenosoa Tiana, Razakamandimby Ranjanoro, 94 Dickel, Doyl, Mississippi State U., 102 Diehl, Patrick, École Polytechnique Montréal, 26, 68, 79.89.100 Diewald, Felix, U. of Kaiserslautern, 90 Dimakopoulos, Aggelos, HR Wallingford, Ltd., 66 Ding, B.Y., Zhejiang U. City College, 94 Ding, Puxian, South China U. of Tech, 88 Dion, Genevieve, Drexel U., 30 Dionne, Jean-Philippe, Med-Eng, 66 Dixit, Harish, IIT Hyderabad, India, 69 Dobrev, Veselin, LLNL, 61

Davoudi, Mohammadmahdi, Kyungpook Nat'l U., 81

Davydov, Denis, U. of Erlangen-Nurembe, 61

de Frías, Gabriel, Sandia Nat'l Laboratories, 94

de Lataillade, Tristan, HR Wallingford, Ltd., 66

Dawson, Clint, U. of Texas at Austin, 88

de Borst, René, U. of Sheffield, 40

de Bortoli, Daniel, U. of Porto, 71

Dawson, Scott, California Inst. of Tech. 99

Dobrzynski, Cécile, INRIA Bordeaux Sud-Ouest, 50 Dolatabadi, Ali, Concordia U., 90 Dolbow, John, Duke U., 3, 67, 69, 80, 83, 91 Dominguez, Sebastian, Simon Fraser U., 74 Dong, Chugiao, Lehigh U., 34 Dong, Li, Rensselaer Polytechnic Inst., 37 Dong, Yungiao, Hunan U., 94 Dontsov, Egor, U. of Houston, 35, 57, 67, 78 Doostan, Alireza, CU Boulder, 51 Dorduncu, Mehmet, U. of Arizona, 73 Dortdivanlioglu, Berkin, Stanford U., 45, 92 Douglas, Jack, NIST, 93 Drach, Andrew, U. of Texas at Austin, 56 Droba, Justin, NASA Johnson Space Center, 80 Du, Bingxiao, NUDT, 92 Du. Qiang. Columbia U., 93 Du, Xiaoxiao, Beihang U., 72 Duarte, Armando, UIUC, 19, 35, 39 Dubey, Anshu, Argonne Nat'l Laboratory, 74 Dubey, Vasav, Texas A&M U., 64 Dufour, John-Eric, U. of Pavia, 20 Dufour, Steven, École Polytechnique Montréal, 2, 3, 38 Duhamel, Denis, Navier - Université Paris-Est, 40 Duraisamy, Karthik, U. of Michigan, 74, 88, 96 Dusthakar, Dinesh, TU Dortmund, 29 Dyskin, Arcady, U. of Western Australia, 101

Eamon, Christopher, Wayne State U, 26 Earls, Christopher, Cornell U., 79, 90 Ebeida, Mohamed, Sandia Nat'l Laboratories, 85 Eberhardsteiner, Josef, TU Vienna, 36 Echeverri Restrepo, Sebastián, SKF, 83 Egger, Adrian W., ETH Zurich, 100 Eghbalian, Mahdad, U. of Calgary, 25 Ehab Moustafa Kamel, Karim, Université libre de Bruxelles, 30 Eisentraeger, Almut, Fraunhofer ITWM, 73 Elbanna, Ahmed, UIUC, 89 Eldred, Michael, Sandia Nat'l Laboratories, 96 Elias, Renato, Federal U. of Rio de Janeiro, 85, 99 Elkhodary, Khalil, American U.-Cairo, 24 Elshaer, Ahmed, Western U., 36 El-Wardany, Tahany, United Technologies Research Center. 48 Emery, John, Sandia Nat'l Laboratories, 32 Emmendoerfer Junior, Hélio, U. of São Paulo, 92

Enright, Michael, Southwest Research Inst., 21 Eom, Jaesung, Autodesk, 55 Erickson, Lindsav, Sandia Nat'l Laboratories, 39 Ern, Alexandre, CERMICS - École des Ponts, 86, 103 Ernst, Corey, Elemental Technologies, 20 Esipov, Denis, Inst. Computat. Technol. SBRAS, 35, 45,78 Eskandari, Mona, Stanford U., 98 Estep, Donald, Colorado State U., 51 Evans, John, UC Boulder, 43, 50, 62 Evans, Todd, TACC, 104 Facciolà, Chiara, Politecnico di Milano, 95 Fahrenholtz, Samuel, MD Anderson Cancer Center, 43 Fahsi, Adil, École de Technologie Supérieure, 56 Fairbanks, Hillary, CU Boulder, 51 Falk, Michael, Johns Hopkins U., 93, 102 Fan, Tai-Hsi, U. of Connecticut, 60 Fan. Yue. U. of Michigan. 93 Fan, Zongyue, Case Western Reserve Univ., 50 Fancello, Eduardo Alberto, Federal U. of Santa Catarina. 92 Fang, Hongbin, UNC-Charlotte, 14 Fang, Howie, UNC-Charlotte, 35, 72 Fang, Jianguang, The U. of Sydney, 14 Farhat, Charbel, Stanford U., 25, 66, 69, 78, 96 Farokhi, Hamed, McGill U., 49 Farrell-Maupin, Kathryn, Sandia Nat'l Laboratories, 91 Farthing, Matthew, US Army ERDC, 30, 66 Fattebert, Jean-Luc, LLNL, 28, 48 Fausty, Julien, PSL - Mines Paristech - CEMEF, 16 Fekak, Fatima-Ezzahra, Université de Lyon, INSA-Lyon, 19 Feld-Payet, Sylvia, ONERA The French Aerospace Lab. 100 Feng, James, U. of British Columbia, 69, 101 Feng, Meng, U. of Illinois, 36 Feng, Xinzeng, U. of Texas at Austin, 43 Feng, Ying, Dalian U. of Technology, 31 Feng, Yusheng, UT San Antonio, 43, 55 Ferencz, Robert, LLNL, 28, 38 Ferraro, Mark, Sandia Nat'l Laboratories, 49 Figueroa, C. Alberto, U. of Michigan, 64, 77 Filonova, Vasilina, U. of Michigan, 77

Engvall, Luke, U. of Colorado Boulder, 43

Finnis, Michael W., Imperial College London, 83 Fish. Jacob. Columbia U., 86 Flamant. Nicolas, Technology Company Schlumberger, 35 Fleeter, Casey, Stanford U., 75 Folino, Paula, Universidad de Buenos Aires, F, 68 Fontán, Pedro, Technological Inst. for Industrial Mathematics, 31 Forman, Jason, U. of Virginia, 43 Forster, Chris, Sandia Nat'l Laboratories, 95 Fortin, André, GIREF, Université Laval, 3, 86 Foster, Craig, Univ. of Illinois at Chicago, 35, 57 Foster, John, UT-Austin, 14 Foulk, James, Sandia Nat'l Laboratories, 16, 19, 46, 94 Frank, Robert, Applied Research Associates, Inc., 46 Freeman, Eric, U. of Georgia, 98 Fremy, Flavien, Saint-Gobain, Northboro R&D Center, 47 Fried, Eliot, OIST, 69 Fries, Thomas-Peter, Graz U. of Technology, 19 Frolov, Roman, U. of Alberta, 47 Fuchi, Kazuko, U. of Dayton Research, 81 Fuentes, David, MD Anderson Cancer Center, 43 Fuentes, Federico, The U. of Texas at Austin, 95 Führer, Thomas, Universidad Catolica de Chile, 51 Fujii, Hideki, The U. of Tokyo, 37 Fumagalli, Ivan, Politecnico di Milano, 101 Füssl, Josef, TU Vienna, 36 Gairola, Anant, Western U., 36 Gallice, Gérard, CEA-CESTA, 59 Galvanetto, Ugo, U. pf Padova (Italy), 26 Gambarotta, Luigi, U. of Genova, 18, 62 Gan, Buntara Sthenly, Nihon U., 31 Gan, Yong, Zhejiang U., 32 Gandin, Charles-André, Mines ParisTech, 92 Ganeriwala, Rishi, LLNL, 38 Ganis, Benjamin, The U. of Texas at Austin, 45 Gao, Qiang, Department of Engineering Mech, 31 Gao, Xiaosheng, U. of Akron, 15, 26 García-Soto, A. David, U. of Guanajuato, 27 Garg, Vikram, The U. of Texas at Austin, 103 Garikipati, Krishna, U. of Michigan, 3, 12, 18, 33, 69, 86, 92.102.104 Garimella, Rao, Los Alamos Nat'l Laboratory, 46 Garoosi, Faroogh, École Polytechnique Montréal, 99

Gastaldi, Lucia, Università di Brescia, 95 Gavini, Vikram, U. of Michigan, 48, 61, 72, 102 Gay-Alanís, L. Francisco, U. of Guanajuato, 27 Gavnor, Andrew, U.S. Army Research Laboratory, 59 Gayzik, Scott, Wake Forest School of Medicine, 33 Gebbeken, Norbert, Univ. of the Bundeswehr Munich, 15 Gee, Michael, TU Munich, 49, 61 Geelen, Rudy, Duke U., 67 Geers, Marc, TU Eindhoven, 46, 71 Georgoulis, Emmanuil H, U. of Leicester & NTUA, 86 Geraci, Gianluca, Sandia Nat'l Laboratories, 96 Gerasimov, Tymofiy, TU Braunschweig, Germany, 45, 80,90 Gervais, Thomas, École Polytechnique Montréal, 13, 25 Gessner, Thomas, Ansys Inc., 32 Getachew, Hailu, Michigan State U., 98 Geubelle, Philippe H., U. of Illinois, 36 Geuzaine, Christophe, ULg (Belgium), 33 Gfrerer, Michael Helmut, Graz U, of Technology, 94 Ghabezloo, Siavash, École des Ponts Paris Tech, 67 Ghanem, Roger, USC, 21, 74, 86 Ghavamian, Fariborz, Delft U. of Technology, 104 Ghavesh, Mergen, U. of Adelaide, 49 Gheribi, Aimen, École Polytechnique Montréal, 16 Gherlone, Marco, Politecnico di Torino, Italy, 17, 28 Gholami, Amir, The U. of Texas at Austin, 37, 49 Gholaminejad, Amir, The U. of Texas at Austin, 49 Ghosh, Debraj, Indian Inst. of Science, 52 Ghosh, Somnath, Johns Hopkins U., 16, 30, 83 Ghoshal, Ritwik, Research Fellow, NUS, 68 Giffin, Brian, UC Davis, 103 Gilbert, Robert P., U. of Delaware, 33 Gillman, Andrew, UES, Inc., Notre Dame, 81, 85 Giordano, Thierry, U. of Ottawa, 104 Giovanis, Dimitris, Johns Hopkins U., 51 Giudice, Sebastian, U. of Virginia, 43 Gockel, Brian, AFRL, 39 Gogulapati, Abhijit, OSU, 39 Goh. Kek Boon. NTU. 48 Golovin, Sergey, Lavrentyev Inst. of Hydrodynamics, 35, 78 Gomez, Arnold, Johns Hopkins U., 24 Gomez, Hector, Purdue U., 43, 77 Gonzalez, Jose G., Universidad de Sevilla, 103

Gonzalez, Juan, Caribbean Coastal Ocean Observing Svs., 99 Gopalakrishnan, Jay, Portland State U., 84, 86, 94, 103 Gordan, Ali, 89 Gordon, Peter, Exxonmobil Research & Engr., 57, 87 Goriely, Alain, U. of Oxford, 33 Gorman, Joseph, U. of Pennsylvania, 56 Gorman, Robert, U. of Pennsylvania, 56 Gorodetsky, Alex, Sandia Nat'l Laboratories, 96 Gorti, Sarma, Oak Ridge Nat'l Laboratory, 48 Goshkoderia, Artemii, Technion, 29 Gosselet, Pierre, LMT (ENS Paris-Saclay/CNRS), 18, 86 Govaert, Leon, TU/e, 71 Govender, Indresan, UKZN, 85 Grabe, Jürgen, TUHH, 84 Graber, Jameson, Baylor U., 103 Gracie, Robert, U. of Waterloo, 35, 45, 57, 71, 88, 100 Graham-Brady, Lori, Johns Hopkins U., 39, 52, 64 Granzow. Brian, RPI, 43, 74 Gravenkamp, Hauke, U. of Duisburg-Essen, 103 Gravouil, Anthony, Univ Lyon, INSA-Lyon, CNRS UMR, 19, 92 Grigoriadis, Grigoris, Imperial College London, 55 Grobbel, Marissa, Michigan State U., 98 Grosek, Jacob, Air Force Research Laboratory, 84 Gross, Ben, U. of California Santa, 59, 87 Grover, Hannah, Dartmouth College, 34 Grubisic, Luka, U. of Zagreb, 86 Guan, Pai-Chen, Nat'l Taiwan Ocean U., 50, 57, 84 Guerra, Gabriel, COPPE-UFRJ, 86 Guest, James, Johns Hopkins U., 70 Guibault, Francois, École Polytechnique Montréal, 20 Guilleminot, Johann, Duke U. (CEE), 52, 64 Guillemot, Gildas, Mines ParisTech, 92 Guiza, Ghalia, Mines ParisTech - CFL, 30 Gulervuz, Erman, Nat'l Ctr for Supercomputing Applications, 58 Guleyupoqlu, Berkan, Wake Forest School of Medicine, 33 Gulsoy, E.B., Northwestern U., 92 Gunay, Muhsin Gökhan, Trakya U., Edirne, 17 Gunzburger, Max, Florida State U., 14 Guo, Shu, Johns Hopkins U., 83 Guo, Xu, Dalian U, of Technology, 70, 91 Gurgul, Grzegorz, AGH Krakow, Poland, 20

Gustafsson, Tom, Aalto U., 63 Gutowski, Matthew, UNC Charlotte, 35 Guven, Ibrahim, Virginia Commonwealth Univ., 84 Guzina, Bojan, Civil, Env, & Geo Eng, UMN, 27

Ha, Heon-Young, KIMS, 82 Ha, Vi, U. of Connecticut, 12, 77 Ha, Youn Doh, Kunsan Nat'l U., 63 Haber, Robert, UIUC, 24, 35, 80, 89 Hachem, Elie, Mines ParisTech, 30, 47, 91, 104 Haider, Anita Maria, Graz U. of Technology, 83 Hajaroalsvadi, Setare, UIUC, 89 Hakula, Harri, Aalto U., 86, 95 Hammetter, Chris, Sandia Nat'l Laboratories, 81 Hammond, Si, Sandia Nat'l Laboratories, 95 Hampton, Carolyn, Army Research Laboratory APG. 55 Han, Jang-Woo, Seoul Nat'l U., 28 Han, Jin-Gyu, Seoul Nat'l U., 49 Han, Tongseok, Yonsei U., 62 Hannukainen, Antti, Aalto U, School of Science, 95 Hansbo, Peter, Jönköping U., 91 Hansen, Glen, 12 Hanson, Alexander, Sandia Nat'l Laboratories, 94 Harari, Isaac, Tel Aviv U., 80, 91 Harish, Ajay Bangalore, LUH Hannover, 62 Harnish, Cale, U. of Notre Dame, 31 Harvey, Jean-Philippe, École Polytechnique Montréal, 16 Hascoet, Laurent, INRIA Sophia Antipolis, 103 Hashimoto, Gaku, The U. of Tokyo, 14, 18, 35, 46 Hasse, Hans, U. of Kaiserslautern, 90 Haukaas, Terje, U. of British Columbia, 31 Hauke, Guillermo, EINA, 74 Haut, Terry, LLNL, 38 Hayduke, Devlin, Materials Sciences Corp., 17 Hazle, John, MD Anderson Cancer Center, 43 He, Donghong, SIAMM, 94 He. Junxian, U. Of WesternAustralia, 101 He, Xudong, Northwestern Polytechnical U., 26 Heard, William, U.S. Army ERDC, 20 Hedavati, Marjan, Shezan Research and Innovation Centre, 55 Heier, Michaela, U. of Kaiserslautern, 90 Heitzinger, Clemens, Vienna U. of Technology, 55, 96 Helenbrook, Brian, Clarkson U., 80

Henrionnet, Christel, IMoPA UMR 7365 CNRS, 12 Hernández-Martínez, Alejandro, U. of Guanajuato, 27 Herring, Angela, Los Alamos Nat'l Laboratory, 66 Heuer, Norbert, Universidad Catolica de Chile, 51 Hewson, John, Sandia Nat'l Laboratories, 49 Heyden, Stefanie, Caltech, 102 Hickman, Mason, Vanderbilt U., 39 Higaki, Takefumi, Osaka U., 69 Higdon, Robert, Oregon State U., 103 Hillman, Michael, The Pennsylvania State U., 40 Hirmand, M. Reza, U. of Waterloo, 46 Hirobe, Sayako, Keio U., 89 Hoa, Xuyen Dai, Nat'l Research Council (CA), 13 Hoc, Thierry, LTDS UMR 5513, 12 Hochhalter, Jacob, NASA Langley Research Ctr, 21, 32.41 Hodge, Neil, LLNL, 17, 28, 38 Hoemenn, Mark, Sandia Nat'l Laboratories, 95 Holmquist, Timothy, Southwest Research Inst., 19 Holzapfel, Gerhard A., TU Graz, 12, 33 Homel, Michael, LLNL, 32 Hong, Giwon, The U. of Tokyo, 27, 79 Horger, Thomas, Technical U. of Munich, 12 Hormuth, David, UT Austin, 12, 43, 64 Horsch, Martin, Indian Inst. of Technology Kanpur, 90 Horstemeyer, Mark, Mississippi State U., 102 Horvath, Tamas, U. of Waterloo, 34 Hoshiba, Hiroya, Tohoku U., 81 Hossain, Shaolie, Texas Heart Inst., 56 Hosseini, Kiarash, Shezan Research and Innovation Centre, 55 Howe, Adam, UNC Charlotte, 58 Hsu, David, Wheaton College, 93 Hsu, Ming-Chen, Iowa State U., 50, 98 Hu, Jingwen, U. of Michigan, 33, 43 Hu, Jonathan, 85 Hu, Nan, Dartmouth College, 34 Hu, Ping, Dalian U, of Technolog, 62 Hu. Rui. Dalian U. of Tech., 72, 81 Hu, Ruize, Vanderbilt U., 30 Hu, Shuling, Xi'an Jiaotong U., 102 Hu, Taotao, Xi'an Jiaotong U., 102 Hu, Wei, Lawrence Berkeley Nat'l Laboratory, 61 Hu, Yongjie, U. of Michigan, 93 Hu, Yuhang, UIUC, 71 Hu, Yumeng, CEE, UC Berkeley, 20

Huan, Xun, Sandia Nat'l Laboratories, 91 Huang, Chang-Wei, Chung Yuan Christian U., 55 Huang, Rui, UT Austin, 72 Huang, Ruihao, Michigan Technological Univers, 86 Huang, Shicheng, Dartmouth College, 34 Huang, Shuo, U. of Cincinnati, 102 Huang, Tony, Duke U., 90 Huang, Tzu-Chun, Nat'l Tsing Hua U., 69 Huang, Zhengyu, Stanford U., 69 Hubbard, Matthew, U. of Nottingham, 90 Huddleston, Bradley, Mississippi State U., 102 Huerta, Antonio, UPC-BarcelonaTech, 99 Hughes, Thomas J.R., UT Austin, 43, 56, 63 Huhtanen, Marko, U. of Oulu, Finland, 86 Hung, Hsiao-Hui, Nat'l Ctr for Research on Earthquake Eng., 103 Hurtado, Daniel E., Pontificia Universidad Catolica de Chile, 87 Hyughe, Jacques M., TU Eindhoven, 88 ladicola, Mark, NIST, 89 Ibanez, Daniel, Sandia Nat'l Laboratories, 12, 66 Ichibangase, Toshiki, Tohoku U, 60 Idelsohn, Sergio, ICREA-CIMNE, Barcelona, Spain, 66 Idesman, Alexander, Texas Tech U., 19, 31, 40 Ihme, Matthias, Stanford U., 25 lizuka, Atsushi, Kobe U., Japan, 79 Iliescu, Traian, Virginia Tech, 88 Ilinca, Florin, Nat'l Research Council, 47, 80 Iliopoulos, Athanasios, U.S. Naval Research Laboratory, 37 Im, Seyoung, KAIST, 29, 103 Ionita, Axinte, Los Alamos Nat'l Laboratory, 39 Iovanac, Nicolae, Rose-Hulman Inst of Tech, 47 Irisarri, Diego, EINA, 74 Isaev, Vadim, Schlumberger, 88, 100 Ivanov, Maxim, Schlumberger, 100 Iver, Arvind, Imperial College London, 13 Jahazi, Mohammad, École deTechnologie

Supérieure, 28 Jaiman, Rajeev Kumar, NUS, Singapore, 68 Jakeman, John, Sandia Nat'l Laboratories, 81, 96 James, Kai, U. of Illinois at Urbana-Champaign, 70 Jameson, Antony, Stanford U., 13, 25, 34, 44

Jang, Jae Hoon, KIMS, 82 Jansen, Kenneth, U. of Colorado Boulder, 12, 24, 55, 74.98 Javili, Ali, Bilkent U., 39, 92 Jensen, Henrik M., Aarhus U., 101 Jeong, Cheol, NIST, 93 Jeong, Haesang, KIST Corporation, Korea, 16 Jha, Prashant, LSU, 40, 68 Jiang, Chenfanfu, U. of Pennsylvania, 84 Jiang, Kai, Dalian U. of Technolog, 62 Jiang, Qian, U. of Maryland, 30 Jiang, Tonghu, Johns Hopkins U., 102 Jiang, Wen, Idaho Nat'l Laboratory, 91, 104 Jiang, Yang, Georgia Tech, 47 Jiao, Xiangmin, Stony Brook U., 39 Jimack, Peter, U. of Leeds, 90 Jin, Tao, Los Alamos Nat'l Laboratory, 46 Jo, Ilguk, KIMS, 82 Jo, Junhong, Inha U., 59 Jodas, Danilo, FEUP, 85 Johnen, Amaury, UCL, 33 Jones, Reese, Sandia Nat'l Labs, 41 Jose Rocha da Costa, Leandro, Carleton U., 27, 90 Joshi, Vaibhay, NUS, Singapore, 68 Josyula, Kartik, Rensselaer Polytechnic Inst., 80 Ju, Chuanming, Hunan U., 94 Juha, Mario, Universidad de La Sabana, 24 Junge, Till, EPFL, 48 Kaarnioja, Vesa, Aalto U., 86

Kafka, Orion, Northwestern U., 70 Kahn, Andrew, U. of California, San Diego, 75 Kalantarineiad, Reza, Shezan Research & Innovation Ctr, 55 Kallon, Daramy, U. of Johannesburg, 85 Kalnaus, Sergiy, Oak Ridge Nat'l Laboratory, 49 Kalyanaraman, Kaushik, Rensselaer Polytechnic Inst., 41 Kammer, David, Cornell U., 89 Kaneko, Shigeki, The U. of Tokyo, 79 Kang, Emily, U. of Cincinnati, 75 Kang, Jun Won, Hongik U., Korea, 16 Kang, Zhan, Dalian U. of Technology, 47, 60 Kang, Ziliang, U. of Illinois, 70 Kanitz, Manuela, TUHH, 84 Kanungo, Bikash, U. of Michigan, 61

Kao, Tsu-Hsin, Nat'l Taiwan U., 13 Karim, Mohammad Rezaul, U. of Texas at Dallas, 94 Karkulik, Michael, Universidad Tecnica Santa Maria, 51 Karman, Steve, Pointwise, Inc., 32, 44 Kashiwagi, Masashi, Osaka U., 69 Kashiyama, Kazuo, Chuo U., 77, 99 Kassim, Avad, Hwelett Packard Enterprise, 44 Kataruka, Amrita, UIUC, 58 Kato, Junji, Tohoku U., 60, 81 Kauffman, Justin, Pennsylvania State U., 69 Kaul, Navyan, MAE, North Carolina State Uni., 98 Kaurin, Dimitri, LaCaN UPC, Spain, 87 Kee, Seong-Hoon, Dong-A U., Korea, 16 Kees, Chris, US Army ERDC, 30, 66 Kefal, Adnan, U. of Strathclvde, 28 Keith, Brendan, UT Austin, 43 Kennedy, Graeme, Georgia Inst. of Technology, 37 Kerfriden, Pierre, Cardiff U., 19, 82, 96 Kergrene, Kenan, École Polytechnique Montréal, 96 Keten, Sinan, Northwestern U., 93 Khalighi, Amir, UT Austin, 56 Khalil, Ahmed, Applied Science InterNat'l, 26 Khalil, Mohammad, Sandia Nat'l Laboratories, 27, 81, 90,91 Khalloufi, Mehdi, Mines ParisTech, 30, 47 Khandelwal, Kapil, U. of Notre Dame, 92 Khayyer, Abbas, Kyoto U., 69 Kheradmand Nezhad, Elham, École Polytechnique Montréal. 57 Khodabakshi, Parisa, Texas A&M U., 63 Khodadadian, Amirreza, Vienna U. of Technology, 55, 96 Khoei, Amir Reza, 89 Kieffer, Patrick, U.S. Army ERDC, 20 Kim, Boyoung, Hongik U., Korea, 16 Kim, Byoung Wan, KRISO, 40 Kim, Cheol, Kyungpook Nat'l U., 81 Kim, Chongam, Seoul Nat'l U., 13 Kim, Do Wan, Inha U., 59 Kim, Do-Nyun, Seoul Nat'l U., 43 Kim, Euiyoung, Seoul Nat'l U., 15 Kim, Hobeom, KAIST, 103 Kim, Hyun-Seok, KRISO, 40 Kim. Jaehoon. Seoul Nat'l U., 43 Kim, Ji-Su, Yonsei U., 62

Kim, Jong-Wook, Korea Atomic Energy Research Inst., 68 Kim, Jun-Sik, Kumoh Nat'l Inst Tech, 17, 28 Kim, Moonhong, KAIST, 29 Kim, Tae-Yeon, Khalifa U., 15, 28 Kim, Woo Kyun, U. of Cincinnati, 61 Kindratenko, Volodymyr, UIUC, 24 King, Wayne, LLNL, 28 Kipouros, Timoleon, U. of Cambridge, 92 Kirby, Robert, Baylor U., 103 Kishi, Masayasu, Tohoku U., 49 Klaas, Ottmar, Simmetrix Inc., 55 Kleinberger, Michael, Army Research Laboratory APG. 55 Klinge, Sandra, TU Dortmund U., 33 Knap, Jaroslaw, U.S. Army Research Laboratory, 29, 72, 102 Knittel, Chelsea, Drexel U., 30 Knutsen, Andrew, Henry Jackson Foundation, 24 Ko, Ping-Liang, Academia Sinica, 98 Kobashi, Makoto, Nagoya U., 82 Kobayashi, Marcelo, U. of Hawaii at Manoa, 81 Kochmann, Dennis, ETH Zurich, Caltech, 18, 49, 61, 82 Koci, Persid, U. of Iliinois at Chicago, 57 Koester, Jacob, Sandia Nat'l Laboratories, 62 Koizumi, Yuichiro, Tohoku U., 48 Kokkinos, Odysseas, NTUA, 52 Kokko, Ed, Lawrence Livermore Nat'l Lab, 27 Kolev, Tzanio, LLNL, 61 Kolman, Radek, Inst. of Thermomechanics, 103 Komeili, Matin, Concordia U., 34 Komijani, Mohammad, U. of Waterloo, 35 Kontsos, Antonios, Drexel U., 30 Konyukhov, Alexander, Karlsruhe Inst. of Technology, 15,27 Koric, Seid, Nat'l Ctr for Supercomputing Applications, 58 Körner, Carolin, U. of Erlangen-Nuremberg, 28 Korobenko, Artem, U. of Calgary, 27 Kosianka, Justyna, Cornell U., 79, 90 Kotha, Shravan, Johns Hopkins U., 30 Kotila, Vesa, U. of Oulu, Finland, 86 Kovscek, Anthony, Stanford U., 30 Krause, Rolf, USI Lugano, 15, 61 Krechetnikov, Rouslan, U. of Alberta, 47 Krischok, Andreas, Stanford U., 45, 74, 92

Kriven, Waltraud, UIUC, 58 Kronbichler, Martin, TU Munich, 77 Kroon, Martin, Linnaeus U., 48 Kruczek, Tadeusz, Silesian Univ, Technology, 37 Kubatko, Ethan, The Ohio State U., 77, 88, 99 Kucala, Alec, Sandia Nat'l Laboratories, 69, 80 Kuhn, Charlotte, U. of Kaiserslautern, 90 Kuhnert, Jörg, Fraunhofer ITWM, 99 Kumar, Mukesh, College of Charleston, 31 Kumar, Sachin, Indian Inst. of Technology Ropar, 78 Kuo, Shih-Mo, Nat'l Taiwan Ocean Univ., 84 Kuranakov, Dmitriy, Inst. Computat. Technol. SBRAS, 78 Kurumatani, Mao, Ibaraki U., 72 Kuznetsov, Dmitry, Technology Co. Schlumberger, 35, 88.100 Kuznetsov, Sergey, North Carolina State U., 55 Kvamsdal, Trond, SINTEF Digital, 31, 40 Kvarving, Arne Morten, SINTEF Digital, 31 Kwok, On Lei Annie, Nat'l Taiwan U., 57 Kwok, Tsz Ho, Concordia U., 82 Kyoya, Takashi, Tohoku U., 60, 81 Laaksonen, Mikael, Aalto U., 86 Labaki, Josue, U. of Campinas, 35 Laberge Lebel, Louis, École Polytechnique Montréal, 20 Lacey, Jay, Université de Sherbrooke, 34 Laforest, Marc, École Polytechnique Montréal, 2, 3, 57, 82.96.104 Lahnert, Michael, U. of Stuttgart, 95 Lai, Eric, U. of Pennsylvania, 87 Lam. Khin vong, NTU, 48 Lambrechts, Jonathan, UCL, 33 Landari, Hamza, Laval U., 25 Langelaar, Matthijs, TU Delft, 59 Langenbach, Kai, Rice U., 90 Laouafa, Farid, INERIS, 14 Lapin, Vasily, Inst. Computat. Technol. SBRAS, 78 Larbi, Walid, CNAM Paris France, 49 Larson, Mats G., Umeå U., 91 Lauer, Tressa, Rose-Hulman Inst of Tech, 47 Laug, Patrick, Inria Saclay IdF, France, 41 Laursen, Tod, Khalifa U., 15, 27 Lavazec, Deborah, Université Paris-Est, 40 Law, Kody, Oak Ridge Nat'l Lab, 27

Law-Kam Cio, Yann-Meing, École Polytechnique Montréal. 38 Le Gal, Marine, Saint-Venant Lab., 44 Le Goff, Nicolas, CEA, France, 20 Le Tallec, Patrick, École Polytechnique, Palaiseau, 35 Lebon, Frédéric, LMA, France, 100 Lecampion, Brice, EFPL, 100 Ledoux, Franck, CEA, DAM, DIF, France, 20, 41 Lee, Chan, Agency for Defense Development, 103 Lee, Chung-Hao, U. of Oklahoma, 87 Lee, Dongwook, UC Santa Cruz, 51 Lee, Gyu Mahn, Korea Atomic Energy Research Inst., 68 Lee, Jaekwang, Pusan Nat'l U., 82, 93 Lee, Jae-Young, Seoul Nat'l U., 43 Lee, Jina, Sandia Nat'l Laboratories, 81 Lee, Kang-Heon, Korea Atomic Energy Research Inst., 68 Lee, Kangsu, KRISO, 40 Lee, Michael, U.S. Army Research Laboratory, 102 Lee, Minhyung, Sejong U., 82 Lee, Sang-Bok, KIMS, 82 Lee, Sanghyun, UT Austin, 45, 80 Lee, Sang-Kwan, KIMS, 82 Lee. Sangmin, U. of Notre Dame, 37, 41 Lee, Tae-Ho, KIMS, 82 Lee, Tae-Rin, Seoul Nat'l U., 12, 59 Legay, Antoine, LMSSC, CNAM, Paris, France, 40 Léger, Pierre, École Polytechnique Montréal, 35 Legrain, Gregory, École Centrale de Nantes, 46 Lehrenfeld, Christoph, U. of Göttingen, 66 Leiter, Kenneth W., U.S. Army Research Laboratory, 29 Lejeune, Emma, Stanford U., 73, 101 Lemaire, Simon, EPFL, Switzerland, 17 Leonhart, Dirk, Ruhr U. Bochum, 57 Leser, Patrick, NASA Langlev Research Ctr. 21, 32, 41 Levenston, Marc, Stanford U., 98 Lévêque, David, ONERA The French Aerospace Lab, 100 Lévesque, Martin, École Polytechnique Montréal, 3, 20.26.89 Levine, Jeffrey, Med-Eng, 66 Levine, Lyle, Nat'l Inst. of Standards and Tech., 28 Lew, Adrian, Stanford U., 58, 67, 100 Lewicki, James, LLNL, 81

Lewis, Katherine, LLNL, 41 Li, Bo, Case Western Reserve Univ., 50, 69 Li, Fengyan, Rensselaer Polytechnic Inst., 84 Li, Haoyang, UIUC, 31, 39 Li, He, Brown U., 13, 77 Li, Hengguang, Wayne State U., 51, 63 Li, Hua, NTU, 48 Li, Jason, Rensselaer Polytechnic Inst., 12, 64 Li, Jichun, U. of Nevada Las Vegas, 84 Li, Kangan, Duke U., 50, 80 Li, Lei, U. of Notre Dame, 81 Li, Ming Jun, Nat'l Chiao Tung U., 33 Li, Mingjing, TU Vienna, 36 Li, Peiyu, Tsinghua U., 33 Li, Qing, The U. of Sydney, 14 Li. Shaofan, CEE, UC Berkelev, 18, 20, 29, 48, 77 Li, Xiantao, Penn State U., 18, 48 Li, Xingjie, UNC-Charlotte, 93 Li, Xinshan, Insigneo, Sheffield U., 55 Li, Xuefu, Dalian U. of Technology, 40 Li, Yan, Dartmouth College, 34 Li, Yang, Johns Hopkins U., 24 Li, Ying, U. of Connecticut, 24, 34 Lian, Junhe, RWTH Aachen U., 68 Liang, Bowen, The Ohio State U., 89 Libin, Zhao, School of Astronautics, Beihan U., 59 Liechti, Kenneth, The U. of Texas Austin, 72 Lim, Hojun, Sandia Nat'l Laboratories, 16, 20, 46 Lim, Liang Jin, Plaxis bv, 32 Lima, Ernesto, UT Austin, 12, 64 Lin, Chao-An, Nat'l Tsing Hua U., 69 Lin. Lin. UC Berkelev & LBNL. 61 Lin, Ligiang, The U. of Texas at San Antonio, 24 Lin, Paul, Sandia Nat'l Laboratories, 85, 95 Lin, Stephen, Northwestern U., 47, 92 Lin, Weicheng, Hunan U., 94 Linder, Christian, Stanford U., 45, 58, 67, 73, 74, 78, 92 Lindsay, Alan, U. of Notre Dame, 59 Lindsay, Payton, Purdue U., 36 Lindwall, Johan, Luleå U. of Technology, 60 Ling, Guoming, Chuo U., 77 Ling, Xiaovin, Rose-Hulman Inst of Tech, 47 Lingen, Erik Jan, Dynaflow Research Group, 88 Lintermann, Andreas, JARA-HPC, RWTH Aachen, 95 Lipnikov, Konstantin, LANL, 73 Littlefield, Andrew, ARDEC, 58

Littlewood, David, Sandia Nat'l Laboratories, 16, 46 Liu. Ben. LLNL. 27 Liu, Binghe, Beihand U., 45 Liu, Chao, Rensselaer Polytechnic Inst., 91 Liu, Dani, Drexel U., 30 Liu, Fushen, ExxonMobil Research & Engr., 57, 87 Liu, Jian, U. of Pittsburgh, 48 Liu, Jikai, U. of Pittsburgh, 70, 82 Liu, Ju, Stanford U., 19 Liu, Jun, 67 Liu, Ning, U. of Georgia, 13 Liu, Pai, Dalian U. of Technology, 60 Liu, Shuitan, Dalian U. of Technology, 81 Liu, Shuyu, Johns Hopkins U., 94 Liu, Yijun, U. of Cincinnati, 83, 102 Liu. Yingije. Duke U., 67, 69, 83, 91 Liu, Zixiang, Georgia Inst. of Technology, 90 Livescu, Daniel, Los Alamos Nat'l Laboratory, 31 Lomicka, Christian, Johns Hopkins Applied Physics Lab, 66 Lomov, Stepan V., KU Leuven, 64 Loppi, Niki, Imperial College London, 34 Lorenzo, Guillermo, Universidade da Coruña, 43 Los, Marcin, AGH Krakow, Poland, 20 Louie, David, Sandia Nat'l Laboratories, 80 Lovadina, Carlo, U. of Milano, 73 Lowengrub, John, UC Irvine, 59 Loy, Kak Choon, U. of Ottawa, 51 Lu, Jiacai, U. of Notre Dame, 60 Lu. Jianfeng, Duke U., 69, 93 Lu. Mengkai, Dalian U. of Technolog, 32 Lu, Xiaoxin, École Centrale Paris, 49 Lu, Ye, Univ Lyon, INSA-Lyon, CNRS UMR, 92 Luding, Stefan, U. of Twente, 57 Lukacevic, Markus, TU Vienna, 36 Lundbäck, Andreas, Luleå U. of Technology, 60 Luo, Tuo, U. of Akron, 15 Luo, Xiaolong, 67 Luo. Zhibo. McGill U., 17 Luskin, Mitchell, U. of Minnesota, 93 Lv, Yu, Stanford U., 25 Lykotrafitis, George, U. of Connecticut, 12, 13, 77

M. Nick, Hamidreza, Technical U. of Denmark, 25 Ma, Hang, Shanghai U., China, 94 Ma, Linjian, BIAST, UIUC, 71

Maas, Robert, Netherlands Aerospace Centre, 59 Maassen, Sascha, Universität Duisburg-Essen, 51 Machado, Lucas Q., U. of Brasilia, 47 MacLellan, Christopher, MD Anderson Cancer Center, 43 Macri, Michael, ARDEC, 58 Madenci, Erdogan, U. of Arizona, 63, 73 Madhukar, Amit, U. of Illinois at Urbana-Champaign, 24 Madireddy, Sandeep, Argonne Nat'l Laboratory, 64, 75 Madureira, Alexandre, LNCC, 80 Magnanimo, Vanessa, U. of Twente, 57 Mahdavi, Ashkan, Univ. of Illinois at Chicago, 50 Mahmoud, Ahmed, U. of California, Davis, 85 Maier, Roland, U. of Bonn, 68 Main. Alex. Duke U., 15, 19, 50, 80 Mainza, Aubrey, UCT, 85 Maire, Ludovic, PSL - Mines Paristech - CEMEF, 16 Maire, Pierre-Henri, CEA/CESTA, Le Barp, France, 35 Mak, Eleanor, U. of Waterloo, 71 Makris, Aris, Med-Eng, 66 Malcher, Lucival, U. of Brasilia, 47 Malmelöv, Andreas, Luleå U. of Technology, 60 Malone, Chris, Los Alamos Nat'l Laboratory, 66 Mandadapu, Kranthi, UC Berkeley, 77 Mang, Andreas, UT Austin, 37, 49 Maniatty, Antoinette, RPI, 24, 27 Manktelow, Kevin, Sandia Nat'l Laboratories, 39, 94 Mannheim, Awital, Eindhoven U. of Tech., 71 Manzini, Gianmarco, Los Alamos Nat'l Laboratory, 73, 95 Manzour-ol-Aidad, Ali, Shezan Research & Innovation Ctr. 55 Mao, Yunwei, MIT, 67 Marchand, Basile, LMT (ENS Cachan/CNRS/UPSaclay), 47 Markl. Matthias. U. Erlangen-Nuremberg. 28 Marguis, Emmanuelle, U. of Michigan, 86 Marsden, Alison, Stanford U., 19, 75 Martinez, Mario, Sandia Nat'l Laboratories, 35, 69 Maruyama, Taizo, Tokyo U. of Science, 16, 102 Marzouk, Youssef, MIT, 27, 103 Mascarenhas, Teresa, FMUP, 85 Masouros, Spyros, Imperial College London, 33, 55 Massart, Thierry J., Universite libre de Bruxelles, 30 Massing, André, Umeå U., 91

Massoni, Elisabeth, Mines ParisTech, 47 Masud, Arif, U. of Illinois at Urbana-Champaign, 80, 91 Matachniouk, Anton, Carleton U., 27 Mathisen, Kjell Magne, Norwegian U. of Sci. & Tech., 31 Matic, Peter, Naval Research Laboratory, 66 Matsubara, Seishiro, Tohoku U., 49 Matsui, Kazumi, Yokohama Nat'l U., 63, 89, 100 Matsumoto, Junichi, AIST, 77 Matsumoto, Takuya, U. of Yamanashi, 67 Matsuse, Takehiro, Shinshu U., 18 Matthews, Benjamin, NCAR, 55, 74 Mattioli, Dominik, The Ohio State U., 88 Mayr, Matthias, TU Munich, 61 McClung, Craig, Southwest Research Inst., 21 McFarland, John, Southwest Research Inst., 21 McNamara, Jack, OSU, 39 Medetbekova, Maiya, Technical U. of Denmark, 25 Mediouni, Mohamed, Université de Sherbrooke, 95 Medyanik, Sergey, MES, 58 Megahed, Mustafa, ESI Group, 17 Mehl, Miriam, U. of Stuttgart, 49, 85, 95 Mehrez, Loujaine, USC, 21 Meier, Christoph, MIT, 51 Meier, Holger, ExxonMobil Research & Engr., 87 Melaku, Abiy, U. of Western Ontario, 27 Meliga, Philippe, Mines ParisTech - CFL, 30 Mendoza, Hector, Sandia Nat'l Laboratories, 49 Meng, Fanchao, McGill U., 38 Menon, Sandeep, Ansys Inc., 32 Menzel, Andreas, TU Dortmund, 29 Mercier, Bertrand, CNAM and CEA/INSTN, 34 Meschke, Gunther, Ruhr U. Bochum, 14, 57 Mesri. Youssef. Mines ParisTech - CFL, 30, 47, 91, 104 Metsch, Bram, Fraunhofer SCAI, 73 Meyer, Ralf, Laurentian U., 71 Michaleris, Pan, Autodesk Inc., 17 Michelsen, Hope, Sandia Nat'l Laboratories, 64 Michopoulos, John, U.S. Naval Research Laboratory, 37.43 Mieussens, Luc, Univ. Bordeaux & INRIA, 59 Mikata, Yozo, Bechtel, 18 Miled, Amine, Université Laval, 25 Millán, Daniel, CONICET, 77 Miller, Anna, Wash. Univ, Dept. of Orthopaedic Surgery, 33

Miller, Scott, Sandia Nat'l Laboratories, 69, 79 Min. Baehyun, Ewha Womans U., 80 Minev, Peter, U. of Alberta, 36, 47 Mirabolghasemi, Armin, McGill U., 82 Miranda, David, U. of Bath, UK, 73 Mirkhalaf, Mohsen, TU/e, 71 Mitchell, Drew, MD Anderson Cancer Center, 43 Mitsuhashi, Yuta, Kozo Keikaku Engineering Inc., 14, 35 Mitsume, Naoto, The U. of Tokyo, 27, 46, 79 Miyamura, Tomoshi, Nihon U., 79, 104 Mobasher, Mostafa, Columbia U., 45 Moffat, Harry, Sandia Nat'l Laboratories, 49 Mohammad, Sved, HQ DHS S&T, CDS ORA, 58 Mohan, Nisha, Los Alamos Nat'l Lab, 100 Molinari, Jean-Francois, EPFL, 48 Monet, Frédéric, École Polytechnique Montréal, 13 Moody, Jonathan, Southwest Research Inst., 21 Mora Paz, Jaime, The U. of Texas at Austin, 95 Morabito, Michael, Lehigh U., 34 Mordhorst, Mylena, U. of Stuttgart, 78 Morin, Benjamin, LMSSC, CNAM, Paris, France, 40 Morita, Naoki, The U. of Tokyo, 18 Morris, Joseph, LLNL, 100 Morris, Karla, Sandia Nat'l Laboratories, 39 Moscoso, Miguel, Universidad Carlos III De Madrid, 16 Moslemi, Mahdi, École de Technologies Supérieure, 56 Moss, Jonathan, UNC Charlotte, 58 Mota, Alejandro, Sandia Nat'l Laboratories, 16, 18, 19, 46 Motamarri, Phani, U. of Michigan, 48 Moulinec, Hervé, LMA (France), 100 Moulton, David J., Los Alamos Nat'l Laboratory, 73 Mourad, Hashem, Los Alamos Nat'l Laboratory, 46 Moussa, Charbel, PSL - Mines Paristech - CEMEF, 16 Moxey, David, Exeter U., 44 Mrovec, Matous, Ruhr-Universität Bochum, 83 Mu, Lin, Oak Ridge Nat'l Lab, 51 Mueller, Kei, Lawrence Livermore Nat'l Lab. 68 Mukherjee, Debanjan, Univ. of California, Berkeley, 24 Müller, Ralf, U. of Kaiserslautern, 90 Münstermann, Sebastian, RWTH Aachen U., 68 Muramatsu, Mayu, Tohoku U., 49

Na, SeonHong, Columbia U., 45

Naboulsi, Samir, HPCMP PETTT CSM Lead - AFRL DS. 38 Nachbagauer, Karin, U. Appl. Sci. of Upper Austria, 28 Nadarajah, Siva, McGill U., 3, 13, 44 Nagai, Toshiki, U. Colorado, 15 Nagaraj, Sriram, ICES, UT Austin, 84 Nagarajan, Anand, The Ohio State U., 89 Nagashima, Toshio, Sophia U., 26, 36 Najm, Habib, Sandia Nat'l Laboratories, 91 Nam, Bo-Woo, KRISO, 40 Nama, Nitesh, Penn State U., 90 Narayan, Akil, U. of Utah, 51 Narayanna, Sri Hari Krishna, Argonne Nat'l Laboratory, 103 Nastasia, Rocco, Simmetrix Inc., 55 Natal Jorge, Renato, INEGI, Faculty of Engineering. 85 Negi, Vineet, Rensselaer Polytechnic Inst., 98 Nelli Silva, Emílio Carlos, U. of São Paulo, 92 Nestola, Maria, USI Lugano, 61 Neumann, Philipp, U. of Hamburg, 15 Newell, Nicolas, Imperial College London, UK, 33 Newell, Pania, The U. of Utah, 25, 35 Newman, Christopher, Los Alamos Nat'l Laboratory, 28 Nguyen, Hoang, Northumbria U., 72 Nguyen, Ngoc, MIT, 94 Niazi, Sina, U. of Nebraska-Lincoln, 26 Nicely, Clint, The U. of Texas at Dallas, 36 Nick, Fabian, Fraunhofer SCAI, 73 Niemi, Antti H., U. of Oulu, 63 Nigam, Nilima, Simon Fraser U., 74, 103 Niknam Jahromi, Hamed, McGill U., 82 Nissen, Walt, LLNL, 41 Noble, David, Sandia Nat'l Laboratories, 19, 49, 69, 80, 95 Noll. Maximilian. TU Munich. 61 Nolte, Adam, Rose-Hulman Inst. of Tech., 47 Norato, Julian, U. of Connecticut, 59, 70, 81 Noshadravan, Arash, Texas A&M U., 64 Nouveau, Léo, INRIA Bordeaux/Duke U., 50 Novikov, Alexei, Penn State U., 16 Nye, Laura, Michigan State U., 98

O'Brien, Adam, U. of Toronto, 90 O'Conner, Devin, US Army ERDC, 30

O'Hara, Patrick, UTC/AFRL, 31, 39 Oberai, Assad, Rensselaer Polytechnic Inst., 27, 37, 43, 55, 64, 74, 91 Oden, J. Tinsley, UT Austin, 12, 43, 64, 90 Oesterle, Bastian, U. of Stuttgart, 63 Ogawa, Shun, Tohoku U., 60, 81 Oguni, Kenji, Keio U., 89 Ohlberger, Mario, U. of Münster, 29, 66 Ohno, Shintaro, Kajima Cooperation, Japan, 79 Ohno, Yushi, Tohoku U., 48 Ohsaki, Makoto, Kyoto U., 79 Ojalammi, Antti, Aalto U. School of Science, 95 Okada, Hiroshi, Tokyo U. of Science, 15, 36 Okamoto, Ruth, Washington U. in St. Louis, 24 Okazawa, Shigenobu, U. of Yamanashi, 30, 67, 72 Okstad, Knut Morten, SINTEF Digital, 31 Okuda, Hiroshi, The U. of Tokyo, 14, 18, 35, 46, 73 Olsen, Katherine, U. of Calgary, 24 Olson, Derek, RPI, 93 Olson, Lorraine, Rose-Hulman Inst of Tech, 47 Omidi. Omid. U. of Kansas. 35 Onishi, Yuki, Tokyo Inst. of Technology, 19 Ono, Masahiro, Tokyo U. of Science, 36 Ortiz, Michael, Caltech, 61, 93, 102 Ortiz-Bernardin, Alejandro, Universidad de Chile, 40 Ortner, Christoph, U. of Warwick, 93 Osanov, Mikhail, Johns Hopkins U., 70 Osiptsov, Andrei, Skoltech, 100 Oskay, Caglar, Vanderbilt U., 16, 28, 30, 46, 68, 79 Ostien, Jakob, Sandia Nat'l Laboratories, 19, 41, 94 Ostrowski, Ziemowit, Silesian Univ. Technology, 37 Oterkus, Erkan, U. of Strathclyde, 28, 63, 73 Oterkus, Selda, U. of Strathclvde, 73 Ovall. Jeffrev. Portland State U., 86, 95 Owen, Steven J., Sandia Nat'l Laboratories, 20 Owens, John, UC Davis, 85 Oxberry, Geoffrey, LLNL, 91 Ozell, Benoît, École Polytechnique Montréal, 95, 104 Oztekin, Alparslan, Lehigh U., 34 Ozturk, Deniz, Johns Hopkins U., 30, 31

Pacheco, Gustavo, Polytechnic U. of PR, 14 Pal, Mahendra Kumar, NIED, Japan, 79 Palta, Emre, UNC Charlotte, 35 Panahandeh, Danial, Civil, Env, & Geo Eng, UMN, 27 Panchadhara, Rohan, ExxonMobil Research & Engr., 87 Pande, Sushrut, UC Berkeley, 50 Pando, Miguel, U of North Carolina at Charlotte, 14 Pang, Sze Dai, Nat'l U. of Singapore, 26 Pankow, Mark, North Carolina State University, 45 Panzer, Matthew B., U. of Virginia, 43 Papadopoulos, Panaviotis, UC Berkeley, 50 Papadopoulos, Vissarion, NTUA, 30, 52 Papadrakakis, Manolis, NTUA, 52 Papanicoloau, George, Stanford U., 16 Papoulia, Katerina D., U. of Waterloo, 46 Paquette-Rufiange, Antonin, École Polytechnique Montréal, 82 Paraizo, Paulo, Petrobras, 99 Paraschivoiu, Marius, Concordia U., 3, 90 Parchei-Esfahani, Matin, U. of Waterloo, 57 Parente, Marco, INEGI, U. of Porto, 85 Parish, Eric, Univ of Michigan, 88 Park, Jae Hyun, Gyeongsang Nat'l U., 71, 82, 93 Park, Jong-Chun, Pusan Nat'l U., 69 Park, K.C., U. of Colorado at Boulder, 103 Park, Kyoungsoo, Yonsei U., 72 Parks, Geoff, U. of Cambridge, 92 Parks, Michael, Sandia Nat'l Laboratories, 36 Parno, Matt, CRREL, 103 Parolini, Nicola, Politecnico di Milano, 101 Pask, John, LLNL, 61, 72 Pasternak, Elena, U. of Western Australia, 101 Paszvnski, Maciei, AGH UST, 20 Patel, Parth, Johns Hopkins Applied Physics Lab., 66 Patra, Abani, U. at Buffalo, SUNY, 99 Patton, Alessia, U. of Pavia, 20 Paulino, Glaucio, Georgia Tech, 47, 70, 72, 73, 92 Pawlowski, Roger, 85 Paxton, Anthony T., King's College London, 83 Peco, Christian, Duke U., 69, 83 Peerlings, Ron. TU Eindhoven, 46, 82 Peirce, Anthony, U. of British Columbia, 35, 67 Pelerin, Jeanne, UCL, 33 Pellegrino, Sergio, Caltech, 49 Pellerin, Jeanne, UCL, Belgium, 33 Peluchon, Simon, CEA-CESTA, 59 Peng, Haijun, Dalian U. of Technology, 41 Peng, Qing, U. of Michigan, 18, 29 Pennacchio, Micol, IMATI-CNR, Pavia, Italy, 95

Peraire, Jaime, MIT, 94 Perdikaris, Paris, MIT, 75 Perego, Mauro, Sandia Nat'l Laboratories, 30, 81 Pereira, Aledir, UNESP, 85 Persson, Per-Olof, UC Berkeley, LBNL, 56 Peters, Eric, U. of Colorado Boulder, 62 Peterseim, Daniel, U. of Bonn, 68 Petra, Cosmin, LLNL, 91 Petrides, Socratis, UT Austin, 43, 84 Pettit, Chris, United States Naval Academy, 27, 81, 90, 91 Pham, Dzung, Henry Jackson Foundation, 24 Philen, Michael, Virginia Tech, 98 Phillips, Edward, 85 Phipps, Eric, Sandia Nat'l Laboratories, 64 Phlipot, Greg. Caltech, 82 Picu, Catalin, Rensselaer Polytechnic Inst., 98 Pierce, David, U. of Connecticut, 12, 13 Pino Muñoz, Daniel, PSL - Mines Paristech - CEMEF, 16 Pinz, Maxwell, Johns Hopkins U., 30 Pinzano, Astrid, IMoPA UMR 7365 CNRS, 12 Pitt, Jonathan, Pennsylvania State U., 69, 90 Plante, Frédéric, École Polytechnique Montréal, 49 Plews, Julia, Sandia Nat'l Laboratories, 31, 39 Podlozhnyuk, Alexander, DCS-computing, 57 Poh, Leong Hien, Nat'l U. Singapore, 16, 78 Poirel, Dominique, Royal Military College of Canada, 27, 81, 90, 91 Pölz, Dominik, Graz U. of Technology, 94 Poncet, Sébastien, Université de Sherbrooke, 34 Ponga, Mauricio, U. of British Columbia, 61 Popp, Alexander, Technical U. of Munich, 51 Prada, Daniele, IMATI-CNR, Pavia, Italy, 95 Prakash, Naveen, Virginia Tech, 26 Pranesh, Srikara, Indian Inst. of Science, 52 Previtali, Barbara, Politecnico di Milano, 17 Prince, Jerry, Johns Hopkins U., 24 Pringle, William J., U. of Notre Dame, 99 Prudhomme, Serge, École Polytechnique Montréal, 2, 3, 57, 82, 86, 96 Pryer, Tristan, U. of Reading (UK), 86 Puso, Mike, LLNL, 27

Qasim, Muhammad, Insigneo, Sheffield U., 55 Qi, Liang, U. of Michigan, 93 Qian, Dong, The U. of Texas at Dallas, 26, 36, 83, 94 Qian, Zhenpeng, The U. of Texas at Dallas, 94 Qidwai, Siddiq, Nat'l Science Foundation, 10, 43 Qin, Shiyi, Binghamton U, 44 Qirko, Klajdi, U. of Delaware, 63 Qiu, Mingfeng, U. of British Columbia, 101 Qiu, Weifeng, City U. of Hong Kong, 94 Qu, Yegao, Shanghai Jia Tong U., 15 Quadros, William, Sandia Nat'l Labs, 32 Quezada de Luna, Manuel, US Army ERDC/ORISE, 66 Quinn, Jake, U. of Nebraska-Omaha, 32 Quintard, Michel, IMFT/INPT/CNRS, 14

Rabczuk, Timon, Bauhaus-Universität Weimar, 62, 72 Rädel, Martin, German Aerospace Center (DLR), 36 Radhakrishnan, Balasubramaniam, Oak Ridge Nat'l Lab, 28 Radovitzky, Raul, MIT, 58 Rahimi, Mehrzad, The Ohio State U., 99 Rahman, Mohammad, UT San Antonio, 43 Rahman, Nabil, The Steel Network Inc., 26 Rahman, Sharif, The U. of Iowa, 31 Rahul, Rensselaer Polytechnic Inst., 30, 55, 56, 80 Rakoczy, Przemyslaw, Transportation Tech. Ctr, Inc, 26 Rakotomalala, Noémie, Safran Tech, 89 Ramabathiran, Amuthan, Caltech, 93 Ramachandra, Abhay, Stanford U., 75 Ramesh, K.T., Johns Hopkins U., 24 Ramm, Ekkehard, Inst. for Str. Mech., UofSt. 20, 63 Rammohan, A.V., Nat'l Univ of Singapore, 71 Ramos, Katherine, U. of Notre Dame, 85 Rangarajan, Ajay, RWTH Aachen U., 25 Rankouhi, Buzz, UW, Madison, 60 Rao, Garimella, Los Alamos Nat'l Laboratory, 66 Rao, Rekha, Sandia Nat'l Laboratories, 80, 90 Rashid, Mark, UC Davis, 27, 103 Rasquin, Michel, Cenaero, Gosselies, Belgium, 74 Rave, Stephan, U. of Münster, 29, 66 Reali, Alessandro, U. of Pavia, 20 Reddy, Junuthula, Texas A&M U., 63 Reed, Matthew, U. of Michigan, 33 Reedlun, Benjamin, Sandia Nat'l Laboratories, 20 Rego. Bruno. The U. of Texas at Austin. 56 Remij, Ernst W., TU Eindhoven, 88

Remmers, Joris J.C., TU Eindhoven, 88 Ren, Xuchun, Georgia Southern U., 91 Rey, Christian, Safran Tech, 47, 86 Rey, Valentine, LSMS (ENAC/EPFL), 86 Rezaei Mianroodi, Jaber, RWTH Aachen U., 72 Rhebergen, Sander, U. of Waterloo, 34 Riber, Stéphanie, Mines ParisTech - CFL, 91 Ribot, Josep Maria, UCCS, 80 Ricchiuto, Mario, NRIA Bordeaux Sud-Ouest, 50 Richariya, Ashutosh, LVPEI Hyderabad, India, 69 Richart, Nicolas, École Polytech. Fédérale de Lausanne, 101 Rieben, Robert, LLNL, 61 Rigger, Stefan, TU Wien, 96 Rimoli, Julian, Georgia Tech, 92 Ringue, Nicolas, McGill U., 13 Rivas, Endrina, U. of Waterloo, 57 Rizzi, Francesco, Sandia Nat'l Labs, 41 Robbins, Brian, Sandia Nat'l Laboratories, 32 Robbins, Josh, Sandia Nat'l Laboratories, 81 Roberts, Scott, Sandia Nat'l Laboratories, 39, 49 Robinson, Brandon, Carleton U., 27, 90 Roccabianca, Sara, Michigan State U., 98 Rochinha, Fernando, COPPE-UFRJ, 86 Rodgers, William, GM Corp., 21 Rodrigue, Denis, Université Laval, 82 Röhrle, Oliver, U. of Stuttgart, 78 Rokos, Ondrej, TU Eindhoven, 82 Romanovskii, Rostislav, Schlumberger, 100 Romero, Ignacio, IMDEA Materials, 51 Romero, Joshua, Stanford U., 34 Rossa, Andre, Federal U. of Rio de Janeiro, 77 Rotanova, Tatiana, Lavrentvev Inst. of Hydrodynamics, 35 Roters, Franz, Max-Planck Inst. for Iron Research, 46 Roth, Simon-Nicolas, École de Technologie Supérieure, 35 Rothé, Pierre-Loïk, Navier/CERMICS (ENPC), 64 Roubtsova, Varvara, IREQ, Hydro-Quebec, 57 Rousset, Nassim, École Polytechnique Montréal, 13 Roux, Willem, LSTC, 92 Rowley, Clarence, Princeton U., 99 Roy, Souvik, Rensselaer Polytechnic Inst., 24 Rudraraju, Shiva, U. of Wisconsin, 12, 33, 92, 102 Rudvkh, Stephan, Technion, 29, 38, 48, 60 Ruggles, Timothy, NIA, 41

Rukangu, Andrew, U. of Georgia, 98 Runnels, Brandon, U. of Colorado, Colorado Springs, 80 Rushdi, Ahmad, U. of California, Davis, 85 Russo, Alessandro, U. degli Studi di Milano-Bicocca, 95 Russo, Luigi, U. of Strathclyde, 63 Rust, Evan, NIST, 89 Ryckelynck, David, Mines ParisTech, 104 Ryvkin, Michael, Tel Aviv U., 58 S. Di Martino, Elena, U. of Calgary, 24 Saadeghvaziri, Ala, New Jersey Inst. of Tech, 45 Sachse, Renate, Inst. for Structural Mechanics, U. of Sgt, 63 Sacks, Michael, UT Austin, 56, 87, 98 Saeb, Saba, Erlangen-Nuremberg U., 39 Safta, Cosmin, Sandia Nat'l Laboratories, 64 Sagiyama, Koki, U. of Michigan, 92 Sahli Costabal, Francisco, Stanford U., 87 Sahni, Onkar, Rensselaer Polytechnic Inst., 12, 64, 66, 91 Sahu, Amaresh, UC Berkeley, 77 Sain, Trisha, Michigan Technological Univ., 48 Saitou, Kazuhiro, U. of Michigan, 81 Salimzadeh, Saeed, Technical U, of Denmark, 25 Salloum, Maher, Sandia Nat'l Laboratories, 81 Salvadori, Alberto, U. of Notre Dame, 41 Samii, Ali, The U. of Texas at Austin, 88 Sampaio, Luiz, Stanford U., 30 Sanchez, Manuel, U. of Minnesota, 94 Sanders, Clay, Duke U., 29, 47 Sanders, Samantha, École Normale Supérieure de Cachan, 12 Sanders, Travis, The U. of Texas at Austin, 56 Sandhu, Rimple, Carleton U., 27, 91 Sangalli, Giancarlo, U. of Pavia, 20 Sargsyan, Khachik, Sandia Nat'l Laboratories, 91 Sargsyan, Syuzanna, U. of Washington, 88 Sarkar, Abhijit, Carleton U., 27, 81, 90, 91 Sarkis, Marcus, WPI, 80 Sarvaramini, Erfan, U. of Waterloo, 35, 45, 67 Sattari, Samaneh, U. of Calgary, 24 Sauer, Roger, RWTH Aachen U., 15, 77, 87, 98 Saunders, Robert, Naval Research Laboratory, 66 Schanz, Martin, Graz U. of Technology, 83, 94

Schanz, Tom, Ruhr-Universität Bochum, 14, 25 Schäuble, Anne-Kathrin, U. of Stuttgart, 31 Schedensack, Mira, U. of Bonn, 68 Scheufele, Klaudius, U. of Stuttgart, 49, 85 Schiavazzi, Daniele, U. of Notre Dame, 75 Schill, William, Caltech, 102 Schindler, Felix, U. of Münster, 29 Schmidt, Augustin, École Polytechnique Montréal, 82 Schmidt, Eric, U. of Illinois at Chicago, 12 Schmidt, Jochen, German Aerospace Center (DLR), 36 Schoeder, Svenja, TU Munich, 77 Schröder, Jörg, Universität Duisburg-Essen, 51 Schroeder, Craig, U. of California, Riverside, 84 Schroeder, William, Kitware, Inc, 66 Scott, Michael, Brigham Young U., 40, 63 Scovazzi, Guglielmo, Duke U., 19, 30, 50, 52, 61, 68, 80, 83 Seidel, Gary, Virginia Tech, 26, 84, 98 Seidl, Daniel, Sandia Nat'l Laboratories, 37 Seidl. Tom. Sandia Nat'l Laboratories. 37, 74 Seitenfuss, Alan, U. of São Paulo, 63 Seleson, Pablo, Oak Ridge Nat'l Laboratory, 14 Seol. Seeavoung, Rensselaer Polytechnic Inst., 41 Settgast, Randolph, LLNL, 88, 100 Sewell, Chris, LANL (currently at Intuitive Surgical, Inc), 66 Shadden, Shawn C., UC Berkeley, 24 Shadid, John, Sandia Nat'l Laboratories, 85, 96 Shafieezadeh, Abdollah, The Ohio State U., 99 Shahmoradi, Amir, UT Austin, 12 Shakibaeinia, Ahmad, École Polytechnique Montréal, 99 Shakibajahromi, Bahareh, Drexel U., 30 Shalaby, Noha, American U.-Cairo, 24 Shamoradi, Amir. The U. of Texas at Austin, 90 Shams, Ehsan, Rensselaer Polytechnic Inst., 91 Shanaman, Matthew, Johns Hopkins Applied Physics Lab. 66 Shanthraj, Pratheek, Max-Planck Inst. for Iron Research, 46 Shapiro, Vadim, UW-Madison, 19 Sharan, Shailendra, Laurentian U., 57 Sharma, Luv, TU Eindhoven, 46 Shashkov, Mikhail., Los Alamos Nat'l Laboratory, 73 Shen, Meng-Wei, Nat'l Cheng Kung U., 80

Shen, Shengping, Xi'an Jiaotong U., 102 Shen, Yongxing, Shanghai Jiao Tong U., 58 Shephard, Mark, Rensselaer Polytechnic Inst., 32, 41, 55.74.91 Sherburn, Jesse, U.S. Army ERDC, 20 Sherwin, Spencer, Imperial College London, 44 Shetabivash, Hasan, Concordia U., 90 Shi, Jingchang, Northwestern Polytechnical U., 13 Shields, Michael, Johns Hopkins U., 51, 52, 104 Shin, Hyunseong, Seoul Nat'l U., 49 Shinozaki, Yuto, Tokyo U. of Science, 26 Shintaku, Yuichi, U. of Tsukuba, 26 Shiozawa, Sogo, The U. of Texas at Austin, 80 Shokrpour Roudbari, Mahnaz, TU Eindhoven, 69 Shono, Tatsuhiro, The U. of Tokyo, 46 Shontz, Suzanne, U. of Kansas, 32 Siegel, Jason, U. of Michigan, 18 Silling, Stewart, Sandia Nat'l Laboratories, 14 Silva Prado, Diego, School of Engineering of the U, 60 Silva, Elisabete, INEGI, U. of Porto, 85 Simha, Hari, canmetMaterials, NRCAN, 100 Simone, Angelo, Delft U. of Technology, 58, 104 Simsek, Gorkem, TU Eindhoven, 69 Simunovic, Srdian, Oak Ridge Nat'l Laboratory, 49 Sinz, Paul, LSU, 31, 79 Smears, Iain, Inria Paris, 86 Smetana, Kathrin, U. of Twente, M.I.T., 96 Smeulders, David M.J., TU Eindhoven, 88 Smith, Cameron, Rensselaer Polytechnic Inst., 55, 74 Soares, Joao S., The U. of Texas at Austin, 87 Sobotka, James, Southwest Research Inst., 21 Soghrati, Soheil, The Ohio State U., 89 Soimiris, George, 30 Soize, Christian, MSME (Université Paris-Est), 40, 74, 96 Solberg, Jerome, LLNL, 68 Soltanbeigi, Behzad, U. of Edinburgh, 57 Soma, Yuto, Ibaraki U., 72 Sommer, Gerhard, TU Graz, 12 Song, Arnold, US Army ERDC, 30 Song, Chongmin Song, UNSW Sydney, Australia, 85 Song, Jeong-Hoon, U. of Colorado Boulder, 16, 28, 37 Song, Jun, McGill U., 38, 102 Song, Ting, Duke U., 19, 50, 80 Sonon, Bernard, Université libre de Bruxelles, 30 Soto, Orlando, Applied Simulations Inc., 46

Soulaïmani, Azzeddine, École de Technologie Supérieure, 34, 35, 44, 56 Souleymane, Zio, COPPE-UFRJ, 86 Sparks, Paul, U.S. Army ERDC, 20 Sridhar, Shankar, U. of Colorado-Boulder, 13 Srivastava, Vikas, ExxonMobil Upstream Research, 87 Staber, Brian, Université Paris-Est, 52 Stafford, Jason, MD Anderson Cancer Center, 43 Stallings, Paul, Sandia Nat'l Laboratories, 20 Staroselsky, Alexander, United Technologies Research Ctr, 48 Steen, Paul, Cornell U., 69 Steinmann, Paul, U. of Erlangen-Nuremberg, 12, 39, 61 Stender, Michael, Sandia Nat'l Laboratories, 38 Stergiou, Jonathan, NSWC Carderock Division, 69 Stershic, Andrew, Sandia Nat'l Laboratories, 104 Stevens, Erica, U. of Pittsburgh, 48 Stitzel, Joel, Wake Forest School of Medicine, 33 Stogner, Roy, UT Austin, 103 Stowell, Mark, LLNL, 91 Straumit, Ilva, KU Leuven, 64 Stuebner, Michael, U. of Dayton Research Inst., 31, 79 Suarez, Luis, U. of PR at Mayaguez, 14 Subber, Waad, U. of Notre Dame, 41, 64 Subia, Samuel, Sandia Nat'l Laboratories, 38 Suchde, Pratik, Fraunhofer ITWM, 73 Suga, Hayato, Tokyo U. of Science, 101 Sugar, Joshua, Sandia Nat'l Laboratories, 38 Sugiyama, Hirofumi, Yokohama Nat'l U., 89, 100 Suh, Dong-Woo, POSTECH, 82 Sukumar, N., UC Davis, 3, 4, 46, 73, 85, 89, 95 Sun, Chien-Ting, Nat'l Taiwan Ocean U., 57 Sun, Guangyong, The U. of Sydney, 14 Sun, Jiguang, Michigan Technological U., 63, 86 Sun, Xingsheng, Virginia Polytechnic Inst., 61 Suresh, Krishnan, UW Madison, 41, 60, 70 Suryanarayana, Phanish, Georgia Inst. of Technology, 102 Sutton, Oliver J., U. of Leicester (UK), 86 Suzuki, Masaaki, Tokyo U. of Science, 73 Sven, Beckhuis, Ruhr U. Bochum, 57 Svendsen, Bob, RWTH Aachen U., 29, 72 Swiler, Laura, Sandia Nat'l Laboratories, 91 Szeliga, Danuta, AGH Krakow, Poland, 20

Tabarraei, Alireza, UNCCa, 78 Tabiai, Ilyass, École Polytechnique Montréal, 20, 26, 89 Tadmor, Ellad, U. of Minnesota, 38, 61, 82, 102 Taghizadeh, Kianoosh, U. of Twente, 57 Taghizadeh, Leila, TU Wien, 96 Takahashi, Akiyuki, Tokyo U. of Science, 26, 37, 101 Takahashi, Kazuki, Tokyo U. of Science, 37 Takahashi, Toru, Nagoya U., 83 Takaki, Tomohiro, Kyoto Inst. of Technology, 60 Takezawa, Akihiro, Hiroshima U., 47, 82 Tal, David, Columbia U., 86 Talamini, Brandon, MIT, 58, 67 Tamellini, Mattia, Politecnico di Milano, 101 Tan. Anne Marie, Univ. of Illinois, Urbana-Champaign. 72 Tan, Swee Hong, Nat'l U. Singapore, 16 Tan, Vincent, Nat'l U. of Singapore, 71 Tan, Wei Lin, Caltech, 18 Tan, Yixuan, Rensselaer Polytechnic Inst., 27 Tang, Q., Rensselaer Polytechnic Inst., 79 Tang, Shaogiang, Peking U., 94 Tauc. Patrick. École Normale Supérieure de Cachan. 12 Tavares, Joao, FEUP, 85 Tavlaki, Maria, NTUA, 52 Taya, Minoru, U. of Washington, 18 Taylor, Charles, HeartFlow, Inc., 12 Teferra, Kirubel, US Naval Research Laboratory, 43, 64,66 Teichert, Gregory, U. of Michigan, 86 Temiz, Yuksel, IBM Research – Zurich, 25 Templeton, Jeremy, Sandia Nat'l Laboratories, 39, 41, 80 Tendulkar, Saurabh, Simmetrix Inc., 55 Teng, Honghui, Chinese Academy of Sciences, 61 Terada, Kenjiro, Tohoku U., 30, 49 Teran, Joseph, UCLA, 55, 84 TerMaath, Stephanie, U. of Tennessee, 101 Tessler, Alexander, NASA Langley Research Center, 17,28 Tew, Kevin, Coreform, 40, 43 Texier, Damien, École de Technologie Supérieure, 89 Tezaur, Irina, Sandia Nat'l Laboratories, 18, 81 Tezaur, Radek, Stanford U., 25

Therriault, Daniel, École Polytechnique Montréal, 82, 89 Thiagarajan, Vaidyanathan, UW-Madison, 19 Thiele, Marco, Stanford U. / Streamsim Technologies, 30 Thomas, Derek, Coreform LLC, 40, 63 Throne, Robert, Rose-Hulman Inst. of Tech., 47 Tian, Xiaochuan, Columbia U., 93 Tikhonov, Alexey, Schlumberger, 88, 100 Timarci, Taner, Trakya U., Edirne, 17 Tiwari, Sudarshan, U. of Kaiserslautern, 73 Tkachuk, Anton, U. of Stuttgart, 31 To, Albert, U. of Pittsburgh, 48, 60, 82 Tomac, Ingrid, UCSD, 67 Tomasi, Davide, U. of Padova, Italy, 26 Tomov. Vladimir. LLNL. 61 Torres-Sánchez, Alejandro, UPC-BarcelonaTech, 77 Tortorelli, Daniel, U. of Illinois, 70, 81, 91 Touati, Mokhtar, 101 Touhei, Terumi, Tokyo U. of Science, 16, 102 Toulorge, Thomas, PSL - Mines Paristech - CEMEF. 16, 33 Trabelsi, Manel, LMA CNRS, 47 Trageser, Jeremy, George Washington U., 14 Tran, Han, Vietnamese-German U., 89 Tran, Justin, Stanford U., 75 Trask, Nathaniel, Sandia Nat'l Laboratories, 30 Trembacki, Bradley, Sandia Nat'l Laboratories, 49 Triantafyllou, Savvas P., U. of Nottingham, 100 Trinkle, Dallas, Univ. Illinois, Urbana-Champaign, 72 Trott, Christian, Sandia Nat'l Laboratories, 95 Truong, Van Tien, Nat'l U. of Singapore, 47 Truster, Timothy, U. of Tennessee, 80, 91 Tryggvason, Gretar, U. of Notre Dame, 60 Tsogka, Chrysoula, U. of Crete, 16 Tsogtgerel, Gantumur, McGill U., 104 Tsou, Nien-Ti, Nat'l Chiao Tung U., 33, 55 Tsubokura, Makoto, Kobe U., 30 Tsuii. Paul. LLNL. 27 Tu, Qingsong, UC Berkeley, 20, 60 Tubaldi, Eleonora, McGill U., 59 Tung, Yi-Chung, Academia Sinica, 98 Turnbull, Michael S., HR Wallingford, UK, 44 Turner, John, Oak Ridge Nat'l Laboratory, 28, 49 Tzingounis, Anastasios, U. of Connecticut, 13

Uchiyama, Fujio, Kozo Keikaku Engineering Inc., 14, 35 Uekermann, Benjamin, Technical U. of Munich, 15, 85 Urata, Shingo, Asahi Glass Co., Ltd., 48 Urick, Benjamin, The U. of Texas, 56 Utke, Jean, Allstate, 103 Vabishchevich, Petr, Nuclear Safety Inst., RAS, 36 Vacca, Giuseppe, U. of Milano Bicocca, 73 Vaiyapuri, Senthilkumar, CSIR Fourth Paradigm Inst., 36 Valdés-Vázguez, J. Gerardo, U. of Guanajuato, 27 Valette, Rudy, Mines ParisTech, 47, 91 Valiveti, Dakshina, ExxonMobil Upstream Research Center. 57 Valizadeh, Navid, Bauhaus-Universität Weimar, 72 Valov, Alexander, Novosibirsk State U., 35, 78 van Brummelen, E. Harald, TU Eindhoven, 69 van de Ven, Emiel, Netherlands Aerospace Centre, TU Delft, 59 van der Zee, Kris, Univ. of Nottingham, 69 van Dommelen, Hans, TU Eindhoven, 71 van Keulen, Fred, TU Delft, 59 Vanaerschot, Andy, Brussels Airlines, 64 Vandepitte, Dirk, KU Leuven, 64 VanGessel, Francis, U. of Maryland, 71 Vavalle, Nicholas, Johns Hopkins APL, 66 Vaziri Astaneh, Ali, UT Austin, 43, 95 Vedani, Maurizio, Politecnico di Milano, 17 Vedula, Vijay, Stanford U., 19 Veilleux, Michael, Sandia Nat'l Laboratories, 19, 38, 94 Velikanov, Ivan, Schlumberger, 100 Vemaganti, Kumar, U. of Cincinnati, 64, 75 Venkataraman, Satchi, SDSU, 71 Venkovic, Nicolas, Johns Hopkins U., 39 Verani, Marco, Politecnico di Milano, 95, 101 Verma, Chaman Singh, Univ of Wisconsin, Madison, 41 Vermeire, Brian, Concordia U., 13, 25, 34 Verner, Sarah, The U. of Michigan, 12 Vernerey, Franck, U. of Colorado-Boulder, 13 Viceconti, Marco, Insigneo, Sheffield U., 55 Vidyasagar, A., Caltech, 18 Viebahn, Nils, Universität Duisburg-Essen, 51 Vignes, Ryan, Lawrence Livermore Nat'l Laboratory, 38

Vincent, Peter, Imperial College London, 13, 34 Violeau, Damien, EDF-LNHE-LHSV, 44 Vitali, Efrem, LLNL, 100 Vivek, Atul, IIT Hyderabad, India, 69 Vlahopoulos, Nickolas, U. of Michigan, 58 Vo, Thuc, Northumbria U., 72 Vogiatzis, Panagiotis, SUNY Stony Brook U., 59 von Planta, Cyrill, USI Lugano, 15 Voskuilen, Tyler, Sandia Nat'l Laboratories, 39, 49 Voth, Thomas, Sandia Nat'l Laboratories, 12 Wächtler, Timo, Fraunhofer ITWM, 99 Wada, Shogo, The U. of Texas at Dallas, 26 Wada, Yoshitaka, Kindai U., 15 Wade, Sean, U.S. Army ERDC, 20 Waechtler, Timo, Fraunhofer ITWM, 73 Wagner, Gregory, Northwestern U., 47, 92 Waisman, Haim, Columbia U., 45, 46, 58, 68, 89 Walker, Stuart, Altair, 39 Wall, Wolfgang A., Technical U. of Munich, 51, 77 Walsh, Timothy, Sandia Nat'l Laboratories, 29, 81 Wan, Richard, U. of Calagry, 25, 57 Wan, Yang, Shanghai Jiao Tong U., 58 Wang, Chien-Kai, Tamkang U., 98 Wang, Chunmei, Texas State U., 51 Wang, Dongdong, Xiamen U., China, 40 Wang, Hao, Case Western Reserve Univ., 50 Wang, Hsin, Oak Ridge Nat'l Laboratory, 49 Wang, Huanran, 67 Wang, Jiaojiao, Rose-Hulman Inst. of Tech., 47 Wang, Junpeng, Northwestern Polytechnical U., 83 Wang, Junping, Nat'l Science Foundation, 51 Wang, Kevin, Virginia Tech, 15, 61 Wang, Kun, Columbia U., 45 Wang, Qian, Manhattan College, 35 Wang, Qiqi, MIT, 86 Wang, Sheldon, Midwestern State U., 34 Wang, Shuangfeng, South China U. of Tech., 88 Wang, Tao, Northwestern Polytechnical U., 30, 83 Wang, Wei, Beihang U., 72 Wang, Xiangiao, U. of Georgia, 13, 34, 43, 98 Wang, Xiaonan, UNCC, 78 Wang, Xuebin, Stony Brook U., 39 Wang, Yifeng, Sandia Nat'l Laboratories. 80 Wang, Yonggang, 67 Wang, Yongxiang, Columbia U., 89

Wang, Yuheng, Michigan State U., 98 Wang, Yun-Che, Nat'l Cheng Kung U., 80 Wang, Zhenlin, U. of Michigan, 18 Wang, ZJ, U. of Kansas, 13 Warner, James, NASA Langley Research Center, 21, 32, 37, 41 Washabaugh, Kyle, Boeing Commercial Aircraft, 66 Weaver, Caitlin, Wake Forest School of Medicine, 33 Webb III, Edmund, Lehigh U., 34 Weber, George, Johns Hopkins U., 30 Wechsuwanmanee, Peerapon, RWTH Aachen U., 68 Weggel, David, UNC Charlotte, 26, 58 Wei, Daixiu, Tohoku U., 48 Wei, Wei, Lehigh U., 34 Wen, Guilin, Hunan U., 14 Wen, John, RPI, 27 Wen, Lihua, Northwestern Polytechnical U., 83 Westerink, Joannes J., U. of Notre Dame, 99 Wheeler, Mary, UT Austin, 23, 45, 73, 80 Whelan, Matthew, UNC Charlotte, 58 White, Daniel, LLNL, 91 White, Tina, Stanford U., 78 Whitney, Ben, Brown U., 24 Wildev, Tim, Sandia Nat'l Labs, 37, 74 Wilkinson, Angus, U. of Oxford, 37 Willberg, Christian, German Aerospace Center (DLR), 36 Williams, Brett, U.S. Army ERDC, 20 Williams, David, Pennsylvania State U., 34 Wilson, Devon, Arup, 26 Wind, Jens L., Aarhus U., 101 Wirasaet, Damrongsak, U. of Notre Dame, 99 Witherden, Freddie, Stanford U., 13, 25, 34, 56 Wodo, Olga, U. at Buffalo, 48 Woelke, Pawel, Thornton Tomasetti-Weidlinger Applied Sci., 104 Wohlmuth, Barbara, TU Munich, 12, 64, 90 Wood, Aihua, Air Force Inst. of Technology, 16 Wood, Dylan, The Ohio State U., 99 Wopschall, Steven, UC Davis, 27 Wozniak, Maciej, AGH UST, 20 Wriggers, Peter, LUH Hannover, 62 Wright, Jonathan, ESRF, 37 Wu, Chenglin, Missouri U. of Science and Technology, 72 Wu, C.T., LSTC, 62

Wu, Jinying, Dalian U. of Technology, 40 Wu, Junchao, Xiamen U., China, 40 Wu, Lianping, Xi'an Jiaotong U., 102 Wu, Wensi, Cornell U., 79, 90 Wu, Xiaojie, Penn State U., 18 Wu, Zhigang, Dalian U. of Technology, 41 Wyman, Nick, Pointwise, Inc., 32

Xia, Huanxiong, U. of Notre Dame, 60 Xia, Liang, Université Paris-Est, 67 Xia, Wenjie, Northwestern U., 93 Xia, Yi, Cornell U., 69 Xiao, Fei, The Ohio State U., 89 Xiao, Feng, Tokyo Inst. of Technology, 61 Xiao, Jinyou, Northwestern Polytechnical U., 83 Xiao, Yilong, The Ohio State U., 77 Xiao, Youye, Hunan U., 14 Xie, Bin, Tokyo Inst. of Technology, 61 Xie, Wei, Northwestern Polytechnical U., 26 Xie, Xuping, Virginia Tech, 88 Xiu, Dongbin, Ohio State U., 74 Xu, Jun, Beihang U., 45 Xu, Xiao, UT Austin, 14 Xu. Yuan, U. of Western Australia, 101 Xu, Zhanping, U. of Nebraska-Lincoln, 78 Xuan, Zhaocheng, Tianjin U. of Tech&Edu, 27 Xue, Tianju, Shanghai Jiao Tong U., 58

Yaghmaie, Reza, Johns Hopkins U., 83 Yamada, Takahiro, Yokohama Nat'l U., 63, 79, 89, 100 Yamada, Tomonori, The U. of Tokyo, 14, 15, 27, 46, 79 Yamamoto, Takeki, Tohoku U., 63 Yamanaka, Kenta, Tohoku U., 48 Yamashita, Takuzo, NIED, 79 Yan, Hong, Northwestern Polytechnical U., 13 Yan, Jinhui, Northwestern U., 47 Yang, Chao, Lawrence Berkeley Nat'l Lab, 61 Yang, Chaoming, U. of Michigan, 93 Yang, Fan, Rensselaer Polytechnic Inst., 91 Yang, Feng Wei, U. of Sussex, 90 Yang, Haitian, Dalian Univ. Tech., 28 Yang, Judy, Nat'l Chiao Tung U., 50 Yang, Liming, 67 Yang, Ming, The Ohio State U., 89 Yang, Wei, Xiangtan U., 84 Yang, Yabin, TU Delft, 17, 28

Yang, Yeong-Bin, Nat'l Taiwan U., 103 Yankeelov, Thomas, UT Austin, 12, 43, 64 Yano, Masayuki, U. of Toronto, 78, 88 Yao, Guangming, Clarkson U., 50 Yao, Weian, Dalian U. of Technology, 28 Yao, Wen, NUDT, 92 Ye, Hanglin, Rensselaer Polytechnic Inst., 56 Ye, Hongfei, Dalian U. of Technology, 62 Ye, Huilin, U. of Connecticut, 34 Ye, Xiu, U. of Arkansas at Little Rock, 51 Yeganehdoust, Firoozeh, Concordia U., 90 Yenduri, Anurag, Engineering Analyst, Oceaneering, 68 Yeratapally, Saikumar, NIA, 32, 41 Yin, Hanfeng, Hunan U., 14, 35 Yokovama, Yuta, U. of Yamanashi, 72 Yong, Xin, Binghamton U., 44 Yoo, Sung Sic, Seoul Nat'l U., 12 Yoon, Eisung, Rensselaer Polytechnic Inst., 41 Yoon, Young-Cheol, Myongji College, 16, 28 Yoshimura, Shinobu, The U. of Tokyo, 14, 15, 27, 37, 46,79 Yotov, Ivan, U. of Pittsburgh, 73 You. Hojun. Seoul Nat'l U., 13 Youn, Seungwook, Hongik U., Korea, 16 Youn, Sung-Kie, KAIST, 47 Yu, Cheng, Northwestern U., 70 Yu, Fei, UC Irvine, 59 Yu, Feimi, Rensselaer Polytechnic Inst., 79 Yu, Kintak Raymond, 47 Yu, Wenshan, Xi'an Jiaotong U., 102 Yufan, Zhao, Tohoku U., 48 Yun, Giseok, Seoul Nat'l U., 43 Yun, Kyeong-Soo, KAIST, 47 Yusa, Yasunori, Tokyo U. of Science, 15, 36 Yushu, Dewen, U. of Notre Dame, 37 Yvonnet, Julien, Université Paris-Est, 18, 49, 67

Zabaras, Nicholas, U. of Notre Dame, 52 Zaccariotto, Mirco, U. of Padova, Italy, 26 Zahm, Olivier, MIT, 27 Zahr, Matthew, LBNL, UC Berkeley, 56 Zakerzadeh, Rana, UT Austin, 98 Zang, Lina, Shanghai Jiao Tong U., 34 Zang, Mengyan, South China U. of Tech, 57 Zegard, Tomas, PUC Chile, 47, 60 Zeman, Jan, Czech Technical U. in Prague, 82 Zeng, Xianyi, The U. of Texas El Paso, 50, 68 Zeng, Xiaowei, The U. of Texas at San Antonio, 24 Zhang, Alvin, Rensselaer Polytechnic Inst., 12, 66 Zhang, Fengshou, Tongji U., 67 Zhang, Guanfeng, U. of Nebraska-Lincoln, 78 Zhang, Guangliang, Taizhou U., 28 Zhang, Guodong, U. of Notre Dame, 81 Zhang, Hong, Argonne Nat'l Laboratory, 103 Zhang, Hongwu, Dalian U. of Technology, 32, 62 Zhang, Jessica, Carnegie Mellon U., 50, 56, 72 Zhang, Jianming, Hunan U., 94, 102 Zhang, Jiaxin, Johns Hopkin U., 104 Zhang, Jiayong, Dalian U. of Technology, 32 Zhang, Jinhuan, Tsinghua U., 33 Zhang, Kuan, U. of Minnesota, 38 Zhang, Linlin, Dalian U. of Technology, 28 Zhang, Liuyang, U. of Georgia, 98 Zhang, Lucy, Rensselaer Polytechnic Inst., 44, 77, 79, 98 Zhang, Rui, The U. of Texas at Dallas, 83 Zhang, Shanglong, U. of Connecticut, 70 Zhang, Sheng, Dalian U. of Technology, 41 Zhang, Shenghan, École Polytech, Fédérale de Lausanne, 101 Zhang, Shuhai, Vanderbilt U., 16 Zhang, Weisheng, Dalian U. of Technology, 70 Zhang, Will, UT Austin, 87, 98 Zhang, Xiang, Vanderbilt U., 30 Zhang, Xiaodong, SKLBESD, CMCCRDI Co., 91 Zhang, Xiaohui, Lehigh U., 34 Zhang, Xiaopeng, Dalian U. of Technology, China, 47 Zhang, Xiaoxuan, Stanford U., 67 Zhang, Xiaoyu, Vanderbilt U., 68 Zhang, Yihao, U. of Connecticut, 13, 77 Zhang, Yongjie, Carnegie Mellon U., 77 Zhang, Yu, Rensselaer Polytechnic Inst., 91 Zhao, Gang, Beihang U., 72 Zhao, Junfei, Dalian U. of Technology, 62 Zhao, Yaoyao, McGill U., 17 Zhao, Yong, NUDT, 92 Zhao, Yufan, Tohoku U., 48 Zheng, Chengjian, Rensselaer Polytechnic Inst., 27 Zheng, Wei, Dartmouth College, 34 Zheng, Yonggang, Dalian U. of Technology, 32, 62 Zheng, Zumei, South China U. of Technology, 57

Zhou, Guohua, The Pennsylvania State U., 20 Zhou, Lili, Dalian U. of Technology, 62 Zhou, Peng, Harbin Inst. of Technology, 82 Zhou, Xiao, McGill U., 102 Zhou, Yexin, Tongji U. / Jiangsu U., 63 Zhou, Yuqing, U. of Michigan, 81 Zhu, Luoding, Indiana U. / Purdue U., 101 Zhu, Yuanzheng, Georgia Inst. of Technology, 90
Zhu, Zihao, U. of Maryland, 41
Zio, Souleymane, Federal U. of Rio de Janeiro, 99
Ziou, Djemel, Université de Sherbrooke, 95
Zlotnik, Sergio, UPC-BarcelonaTech, 99
Zokagoa, Jean-Marie, École de Technologie Supérieure, 44 Zou, Zhihui, Brigham Young U., 40, 63 Zou, Zilong, Duke U., 21 Zulian, Patrick, USI Lugano, 15, 61 Zundel, Alan, Aquaveo - Water Modeling Solutions, 88 Zwanenburg, Philip, McGill U., 44

TS6: POSTER SESSION - Tuesday, 4:30 - 6:00 pm, 517A

Poster Competition Participants:

Sai Vagbharathi Addagalla Pratyaksh Agrawal Kazem Alidoost Reza Avazmohammadi Olalekan Babaniyi Alexey Baykin Matthew Becton Eric Bryant Hugo Casquero Robert Caulk Heng Chi Youngsoo Choi XI Deng Kelsey DiPietro Yuchen Dong Li Dona Berkin Dortdivanlioglu Kyle Dunn Mahdad Eghbalian Luke Engvall Mona Eskandari Felipe Fernandez Kek Boon Goh Josep Maria Gras Ribot M. Gokhan Gunay Ruize Hu Shiyan Jayanath Jiahua Jiang Kartik Josyula

University of Toronto University of Illinois The University Of Texas at Austin

Lavrentyev Institute of Hydrodynamics University of Georgia Columbia University Carnegie Mellon University University of California, San Diego Georgia Institute of Technology Lawrence Livermore National Lab. Tokyo Institute of Technology University of Notre Dame Worcester Polytechnic Institute **Rensselaer Polytechnic Institute** Stanford University Worcester Polytechnic Institute University of Calgary University of Colorado at Boulder Stanford University University of Illinois at UC Nanyang Technological University UC, Colorado Springs Trakya University Vanderbilt University **Clarkson University** University of Massachusetts Dartmouth **Rensselaer Polytechnic Institute**

Moon Soo Kang Justin Kauffman Nayyan Kaul Kenan Kergrene Mehdi Khalloufi Elham Kheradmand Nezhad **Boyoung Kim** Mohammad Komijani Andreas Krischok Nikola Kuzmic Jae Lee Emma Lejeune Tiange Li Ji-Qin Li Yingjie Liu Zixiang Liu Jikai Liu Dandan Lyu Dominik Mattioli Abdelkrim Merah Mostafa Mobasher S. Muralikrishnan SeonHong Na Hoang Nguyen Fabian Nick Yannick A.D. Omar Deniz Ozturk Antonin Paquette-Rufiange Aishwarya Pawar

Hongik University The Pennsylvania State University North Carolina State University École Polytechnique Montréal Mines ParisTech École Polytechnique Montréal Hongik University, Republic of Korea University of Waterloo Stanford University University of Toronto **UNC Chapel Hill** Stanford University University of California, Berkeley University of Connecticut Duke University Georgia Institute of Technology University of Pittsburgh University of California, Berkeley The Ohio State University University of Boumerdes Columbia University The University of Texas at Austin Columbia University Northumbria University Fraunhofer SCAI **RWTH Aachen University** Johns Hopkins University École Polytechnique Montréal Carnegie Mellon University

Poster Competition Participants:

Gregory Phlipot Naveen Prakash Shivakanth Chary Puligilla Diamondra F.T. R. Ranjanoro William Schill Augustin Schmidt Dingyi Sun Ilyass Tabiai Krishna K. Talamadupula Brandon Talamini **Gregory Teichert** Ajith Ukwattage Ben Vadala-Roth Nicolas Venkovic Javier Videla Yongxiang Wang Zhenlin Wang Haoran Wang George Weber Dylan Wood Xuping Yang Qingcheng Xiaoyu Zhang Xiang Zhang Rui Zhang Xiaoxuan Zhang Jiaxin Zhang Yuging Zhou

California Institute of Technology Virginia Tech

Yonsei University California Institute of Technology École Polytechnique Montréal California Institute of Technology École Polytechnique Montréal Virginia Tech MIT University of Michigan Clarkson Univeristv **UNC Chapel Hill** Johns Hopkins University University of Chile Columbia University University of Michigan University of Illinois at UC Johns Hopkins University The Ohio State University

U. of Pittsburgh & Penn State U. Vanderbilt University Vanderbilt University The University of Texas at Dallas Stanford University Johns Hopkins University University of Michigan Short Courses:

Pre-congress short courses are scheduled on Sunday, July 16, 2017 from 9:00 am to 4:00 pm at the Palais des Congrès de Montréal in 514B, 514C, 515B, and 515C. The following short courses are being offered for USNCCM14:

SC14-001: Peridynamics Theory of Solid Mechanics: Modeling, Computation, and Applications Instructors: Dr. John Foster, Dr. David Littlewood, and Dr. Pablo Seleson

SC14-004: Discontinuous Petrov-Galerkin Method with Optimal Test Functions Instructor: Dr. Leszek Demkowicz

SC14-005: 2D and 3D Modeling of River and Coastal Areas Hydrodynamics using TELEMAC Instructors: **Drs. Riadh Ata and Dr. Sébastien Bourban**

SC14-008: Computational Phase-Field Modeling Instructor: Dr. Kris van der Zee

Notes:	Notes:

Notes:	Notes:	

Notes:	Notes:	

Registration Package:

You will find in your registration package the following items:

- 1. **Foldable Backpack:** Compact, lightweight construction makes this an awesome bag for travel! Fold it into its own zippered pocket for easy storage or use it to pack for extras/souvenirs from your trip.
- 2. Luggage Tag: The luggage tag is attached to the backpack. You are encouraged to personalize it by writing your name on it. Markers are available at the registration desk.
- 3. **Stylus Pen:** Use it either as a stylus to scroll through the **Congress App** or as a "good ol' handwriting" pen to take notes.
- 4. Plastic Envelop: The envelop contains flyers, registration information, ...
- 5. **Bottle of Maple Syrup**: A special gift from Québec for your sweet tooth! The maple syrup has been especially prepared by the owners of the Cabane à Sucre Osias, which started in the early 1900's and is located in the region of Lanaudière, about one hour North of Montréal.

www.cabaneosias.com

Other Items:

Some USB flash drives and laser pointers will be available at the Registration Desk, if needed. Rooms will be provided with laser pointers. Finally, notebooks and notepads will be available on a self-serve basis at the Registration Desk.

Recycling:

We understand that some of the articles in your registration package will not be of any use for you or simply not to your taste.

No problem! However, for the sake of reducing waste, we would appreciate it if you could recycle the articles that you would like to discard rather than just throwing them in the basket of your hotel room...

You will find containers and baskets in 517A during the whole congress for recycling.

Thank you!

Food and Drinks:

There are many restaurants and cafés around the Palais des Congrès de Montréal. We have nevertheless compiled a few "Incontournables" for all taste for those who feel like exploring a bit further. A more comprehensive list is also available on the congress website.

Restaurants:

Mai Xiang Yuan, 1082 St Laurent Blvd, \$\$ Olive et Gourmando, 351 Saint-Paul St W, \$ Niu Kee. 1163 Clark St. \$\$ Ikanos, 112 McGill St #1, \$\$ LOV Restaurant, 464 McGill St, \$\$ Stash Café, 200 Saint-Paul St W, \$ Boustan, 2020 Crescent St. \$ La Pizzaiolle, 600 Marguerite d'Youville St, \$\$ Ganadara, 1862 Maisonneuve Blvd W, \$\$ Lola Rosa Café, 545 Milton St, \$\$ Grenadine, 2004 Hôtel-de-Ville Ave, \$\$\$\$ Europea, 1227 de la Montagne St. \$\$\$\$ Burger Bar Crescent, 1465 Crescent St, \$\$ Schwartz's Deli, 3895 St Laurent Blvd, \$ Moishes, 3961 St Laurent Blvd, \$\$\$\$ O-Thym, 1112 de Maisonneuve Blvd E, \$\$\$ Nil Blue, 3706 St Denis St. \$\$ Ma Poule Mouillée, 969 Rachel St E, \$

Cafés and Bars:

Crew Collective & Café, 360 St Jacques St Tommy, British Empire Building, 200 Notre-Dame St W Café Olimpico, 419 St Vincent St Café de Mercanti Old Montreal, 350 Notre-Dame St E #1 Café Osmo, 51 Sherbrooke St W Café Santropol, 3990 St Urbain St

Terrasse Place D'Armes, 55 Saint-Jacques St, 8th floor, \$\$ Joverse, 52 St Jacques St, \$\$ Bistro-Brasserie Les Soeurs Grises, 32 McGill St, \$\$ Brasseur de Montréal, 1485 Ottawa St, \$\$ La Distillerie, 300 Ontario St E, \$\$ Réservoir, 9 Duluth Ave E, \$\$ N sur Mackay, 1244 Mackay St, \$\$ Dieu du Ciel!, 29 Laurier Ave W, \$\$

Cultural Activities in Montréal:

Montréal is internationally recognized for its many summer festivals, unique architecture, and hospitality. This year is also special because of **Montreal375** and **Canada150**. If you need any information about activities in Montréal and surroundings, feel free to ask one of the agents at the **Information Desk at the foot of the escalators** or at the **Desk specially set up for the congress by Tourisme Montréal nearby the Registration Desk**.

Below are some activities listed for each day of the week. More information is also available on the congress website.

Saturday, July 15:

Comedy Festival Montréal Just For Laughs, Fantasia Film Festival, Festival International Nuits d'Afrique, Montréal Cirque Festival, Montreal International Fireworks Competition (Poland), Explosion 67–Terre des Jeunes

Sunday, July 16:

Comedy Festival Montréal Just For Laughs, Fantasia Film Festival, Festival International Nuits d'Afrique, Montréal Cirque Festival, Piknik Électronique, Tam Tams, Explosion 67–Terre des Jeunes, La Balade pour la Paix–Un Musée à Ciel Ouvert

Monday, July 17:

Comedy Festival Montréal Just For Laughs, Fantasia Film Festival, Festival International Nuits d'Afrique

Tuesday, July 18:

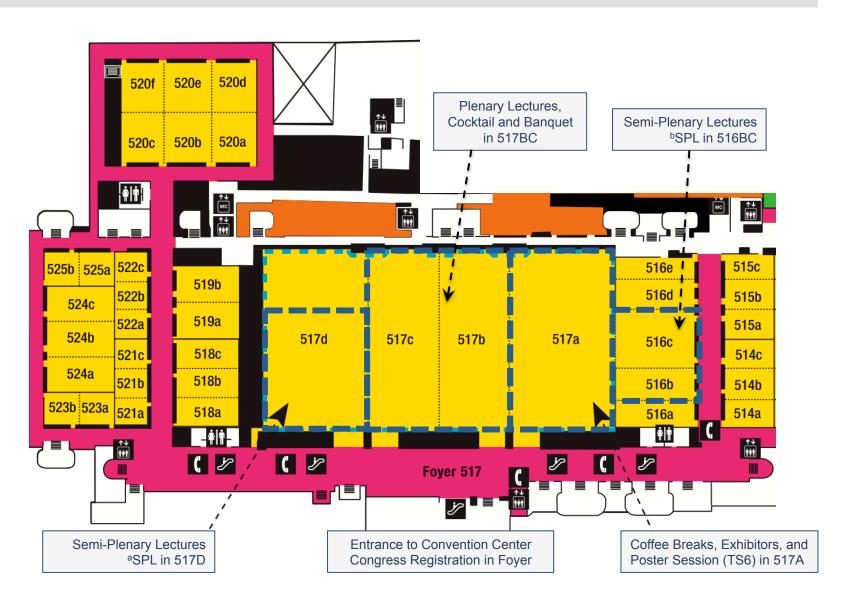
Comedy Festival Montréal Just For Laughs, Fantasia Film Festival, Festival International Nuits d'Afrique

Wednesday, July 19:

Comedy Festival Montréal Just For Laughs, Fantasia Film Festival, Festival International Nuits d'Afrique, Montréal International Fireworks Competition (Germany), Explosion 67–Terre des Jeunes, Montréal Avudo, McCord Museum

Thursday, July 20:

Comedy Festival Montréal Just For Laughs, Fantasia Film Festival, Festival International Nuits d'Afrique, Explosion 67–Terre des Jeunes, La Balade pour la Paix–Un Musée à Ciel Ouvert, Montréal Avudo


Friday, July 21:

Comedy Festival Montréal Just For Laughs, Fantasia Film Festival, Festival International Nuits d'Afrique, Explosion 67–Terre des Jeunes, Montréal Avudo, Soirées Country

Minisymposia at a Glance

Room	TS1	TS2	TS3	TS4	TS5	TS6	TS7	TS8	TS9	TS10
514A	1005	1005	1005	1101	1101		1101	1003	1003	1003
514B	108	108	108	108	106		1109	1104	1104	1104
514C	101	101	101	102	102			105	105	105
515A	104		103	103	103		103	107	107	107
515B	809	809		807	807		805	805	805	1001
515C	806	806	804	804	808		808	808	808	808
516A	001	001	001	001	001]	001	1102	1102	001
516D	801	801	802	802	802		802	802	802	802
516E	813	813	813	813	813		803	812	812	
518A	708	708	708	707	707		707	707	706	
518B	406	406	406	401	401		401	401	401	401
518C	304	304	304	304	304		304	508	508	
519A	912	912	912	912	912		912	912	202	202
519B			605	605	605		605	605	605	
520A	201	201	201	201	201		206	206	206	206
520B			203	203	203		504	204	204	204
520C	205	205	301	301	301		301	301	301	301
520D	501	501	501	501	501		505	505	505	
520E	303	303	303	303	303		507	507	507	
520F	503	503		506	506		506	506	506	506
521BC	405	405	405	404	404		404	404	403	403
522A	902	902	902	913	913		905	1002		
522BC	901	901		901	302		915	915	915	915
523A	701	701	701		914		914	914	705	705
523B	702	709	709	916	916		916	904	904	904
524A	910	910	910	911	911		911	908	908	908
524B	903	903	903		1105		1105	1105	1105	1105
524C	601	601	601	601	602		602	602	602	
525A	703	703		710	710		402	402	402	402
525B	1108	1108	1108	1107	1107			603	603	

Convention Center 5th Floor

14th US National Congress on Computational Mechanics - Montreal, July 17-20, 2017

